Insights From Liver‐Humanized Mice on Cholesterol Lipoprotein Metabolism and LXR‐Agonist Pharmacodynamics in Humans
Background and Aims Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver‐humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabo...
Gespeichert in:
Veröffentlicht in: | Hepatology (Baltimore, Md.) Md.), 2020-08, Vol.72 (2), p.656-670 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 670 |
---|---|
container_issue | 2 |
container_start_page | 656 |
container_title | Hepatology (Baltimore, Md.) |
container_volume | 72 |
creator | Minniti, Mirko E. Pedrelli, Matteo Vedin, Lise‐Lotte Delbès, Anne‐Sophie Denis, Raphaël G.P. Öörni, Katariina Sala, Claudia Pirazzini, Chiara Thiagarajan, Divya Nurmi, Harri J. Grompe, Markus Mills, Kevin Garagnani, Paolo Ellis, Ewa C.S. Strom, Stephen C. Luquet, Serge H. Wilson, Elizabeth M. Bial, John Steffensen, Knut R. Parini, Paolo |
description | Background and Aims
Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver‐humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species‐related, physiological differences.
Approach and Results
Fah−/−, Rag2−/−, and Il2rg−/− knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human‐like pattern, characterized by a high ratio of low‐density lipoprotein to high‐density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low‐density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human‐like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level.
Conclusions
LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine. |
doi_str_mv | 10.1002/hep.31052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_475267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436890999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5812-d26e95af3f0cb6f7f013b9e5aebec8d4c864bcc4ab1fd2a0a7fb1b135091e8d3</originalsourceid><addsrcrecordid>eNp1kc1u1DAURiMEotPCghdAllixSOufOIk3SKNRy1RKRYW6YGc5zs3EJbEHOzOjYcUj9Bl5EtxmKBSJlS3fc4_t-yXJG4JPCcb0rIP1KSOY02fJjHBapIxx_DyZYVrgVBAmjpLjEG4xxiKj5cvkiJGi5ARns2R3aYNZdWNAF94NqDJb8D9_3C03g7LmOzToymhAzqJF53oII3jXR2rt1t6NYCy6glHVrjdhQMo2qPryObbPV86aMKLrTvlBadfsrRqMDig2PKjDq-RFq_oArw_rSXJzcX6zWKbVp4-Xi3mVal4SmjY0B8FVy1qs67wtWkxYLYArqEGXTabLPKu1zlRN2oYqrIq2JjWJ3xcEyoadJOmkDTtYb2q59mZQfi-dMvJw9DXuQGYFp3kR-Q8THysDNBrs6FX_pO1pxZpOrtxWFpnIuaBR8H4SdP-0LeeVvD_DlHPKCN2SyL47XObdt00crrx1G2_jOCTNWF4KLIT4Y9TeheChfdQSLO_jlzF--RB_ZN_-_fxH8nfeETibgJ3pYf9_k1yeX0_KX3X6vrs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436890999</pqid></control><display><type>article</type><title>Insights From Liver‐Humanized Mice on Cholesterol Lipoprotein Metabolism and LXR‐Agonist Pharmacodynamics in Humans</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><creator>Minniti, Mirko E. ; Pedrelli, Matteo ; Vedin, Lise‐Lotte ; Delbès, Anne‐Sophie ; Denis, Raphaël G.P. ; Öörni, Katariina ; Sala, Claudia ; Pirazzini, Chiara ; Thiagarajan, Divya ; Nurmi, Harri J. ; Grompe, Markus ; Mills, Kevin ; Garagnani, Paolo ; Ellis, Ewa C.S. ; Strom, Stephen C. ; Luquet, Serge H. ; Wilson, Elizabeth M. ; Bial, John ; Steffensen, Knut R. ; Parini, Paolo</creator><creatorcontrib>Minniti, Mirko E. ; Pedrelli, Matteo ; Vedin, Lise‐Lotte ; Delbès, Anne‐Sophie ; Denis, Raphaël G.P. ; Öörni, Katariina ; Sala, Claudia ; Pirazzini, Chiara ; Thiagarajan, Divya ; Nurmi, Harri J. ; Grompe, Markus ; Mills, Kevin ; Garagnani, Paolo ; Ellis, Ewa C.S. ; Strom, Stephen C. ; Luquet, Serge H. ; Wilson, Elizabeth M. ; Bial, John ; Steffensen, Knut R. ; Parini, Paolo</creatorcontrib><description>Background and Aims
Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver‐humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species‐related, physiological differences.
Approach and Results
Fah−/−, Rag2−/−, and Il2rg−/− knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human‐like pattern, characterized by a high ratio of low‐density lipoprotein to high‐density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low‐density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human‐like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level.
Conclusions
LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.31052</identifier><identifier>PMID: 31785104</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>Animals ; Aorta ; Benzoates - pharmacokinetics ; Benzylamines - pharmacokinetics ; Cholesterol ; Cholesterol - metabolism ; Cholesteryl ester transfer protein ; Diabetes mellitus ; Endocrinology and metabolism ; Hepatocytes ; Hepatocytes - metabolism ; Hepatocytes - transplantation ; Hepatology ; Human health and pathology ; Humans ; Hépatology and Gastroenterology ; Kexin ; Life Sciences ; Lipid metabolism ; Lipoproteins ; Lipoproteins - metabolism ; Liver - metabolism ; Liver - surgery ; Liver X receptors ; Liver X Receptors - agonists ; Male ; Metabolism ; Mice ; Mice, Knockout ; mRNA ; Original ; Pharmacodynamics ; Precision medicine ; Proprotein convertases ; Proteoglycans ; RAG2 protein ; Receptor density ; RNA editing ; Subtilisin ; Triglycerides</subject><ispartof>Hepatology (Baltimore, Md.), 2020-08, Vol.72 (2), p.656-670</ispartof><rights>2019 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of American Association for the Study of Liver Diseases.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5812-d26e95af3f0cb6f7f013b9e5aebec8d4c864bcc4ab1fd2a0a7fb1b135091e8d3</citedby><cites>FETCH-LOGICAL-c5812-d26e95af3f0cb6f7f013b9e5aebec8d4c864bcc4ab1fd2a0a7fb1b135091e8d3</cites><orcidid>0000-0002-5476-145X ; 0000-0002-3057-5337 ; 0000-0001-8668-6645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.31052$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.31052$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31785104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02552312$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:143215077$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Minniti, Mirko E.</creatorcontrib><creatorcontrib>Pedrelli, Matteo</creatorcontrib><creatorcontrib>Vedin, Lise‐Lotte</creatorcontrib><creatorcontrib>Delbès, Anne‐Sophie</creatorcontrib><creatorcontrib>Denis, Raphaël G.P.</creatorcontrib><creatorcontrib>Öörni, Katariina</creatorcontrib><creatorcontrib>Sala, Claudia</creatorcontrib><creatorcontrib>Pirazzini, Chiara</creatorcontrib><creatorcontrib>Thiagarajan, Divya</creatorcontrib><creatorcontrib>Nurmi, Harri J.</creatorcontrib><creatorcontrib>Grompe, Markus</creatorcontrib><creatorcontrib>Mills, Kevin</creatorcontrib><creatorcontrib>Garagnani, Paolo</creatorcontrib><creatorcontrib>Ellis, Ewa C.S.</creatorcontrib><creatorcontrib>Strom, Stephen C.</creatorcontrib><creatorcontrib>Luquet, Serge H.</creatorcontrib><creatorcontrib>Wilson, Elizabeth M.</creatorcontrib><creatorcontrib>Bial, John</creatorcontrib><creatorcontrib>Steffensen, Knut R.</creatorcontrib><creatorcontrib>Parini, Paolo</creatorcontrib><title>Insights From Liver‐Humanized Mice on Cholesterol Lipoprotein Metabolism and LXR‐Agonist Pharmacodynamics in Humans</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Background and Aims
Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver‐humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species‐related, physiological differences.
Approach and Results
Fah−/−, Rag2−/−, and Il2rg−/− knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human‐like pattern, characterized by a high ratio of low‐density lipoprotein to high‐density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low‐density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human‐like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level.
Conclusions
LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.</description><subject>Animals</subject><subject>Aorta</subject><subject>Benzoates - pharmacokinetics</subject><subject>Benzylamines - pharmacokinetics</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cholesteryl ester transfer protein</subject><subject>Diabetes mellitus</subject><subject>Endocrinology and metabolism</subject><subject>Hepatocytes</subject><subject>Hepatocytes - metabolism</subject><subject>Hepatocytes - transplantation</subject><subject>Hepatology</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Hépatology and Gastroenterology</subject><subject>Kexin</subject><subject>Life Sciences</subject><subject>Lipid metabolism</subject><subject>Lipoproteins</subject><subject>Lipoproteins - metabolism</subject><subject>Liver - metabolism</subject><subject>Liver - surgery</subject><subject>Liver X receptors</subject><subject>Liver X Receptors - agonists</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>mRNA</subject><subject>Original</subject><subject>Pharmacodynamics</subject><subject>Precision medicine</subject><subject>Proprotein convertases</subject><subject>Proteoglycans</subject><subject>RAG2 protein</subject><subject>Receptor density</subject><subject>RNA editing</subject><subject>Subtilisin</subject><subject>Triglycerides</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kc1u1DAURiMEotPCghdAllixSOufOIk3SKNRy1RKRYW6YGc5zs3EJbEHOzOjYcUj9Bl5EtxmKBSJlS3fc4_t-yXJG4JPCcb0rIP1KSOY02fJjHBapIxx_DyZYVrgVBAmjpLjEG4xxiKj5cvkiJGi5ARns2R3aYNZdWNAF94NqDJb8D9_3C03g7LmOzToymhAzqJF53oII3jXR2rt1t6NYCy6glHVrjdhQMo2qPryObbPV86aMKLrTvlBadfsrRqMDig2PKjDq-RFq_oArw_rSXJzcX6zWKbVp4-Xi3mVal4SmjY0B8FVy1qs67wtWkxYLYArqEGXTabLPKu1zlRN2oYqrIq2JjWJ3xcEyoadJOmkDTtYb2q59mZQfi-dMvJw9DXuQGYFp3kR-Q8THysDNBrs6FX_pO1pxZpOrtxWFpnIuaBR8H4SdP-0LeeVvD_DlHPKCN2SyL47XObdt00crrx1G2_jOCTNWF4KLIT4Y9TeheChfdQSLO_jlzF--RB_ZN_-_fxH8nfeETibgJ3pYf9_k1yeX0_KX3X6vrs</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Minniti, Mirko E.</creator><creator>Pedrelli, Matteo</creator><creator>Vedin, Lise‐Lotte</creator><creator>Delbès, Anne‐Sophie</creator><creator>Denis, Raphaël G.P.</creator><creator>Öörni, Katariina</creator><creator>Sala, Claudia</creator><creator>Pirazzini, Chiara</creator><creator>Thiagarajan, Divya</creator><creator>Nurmi, Harri J.</creator><creator>Grompe, Markus</creator><creator>Mills, Kevin</creator><creator>Garagnani, Paolo</creator><creator>Ellis, Ewa C.S.</creator><creator>Strom, Stephen C.</creator><creator>Luquet, Serge H.</creator><creator>Wilson, Elizabeth M.</creator><creator>Bial, John</creator><creator>Steffensen, Knut R.</creator><creator>Parini, Paolo</creator><general>Wolters Kluwer Health, Inc</general><general>Wiley-Blackwell</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-5476-145X</orcidid><orcidid>https://orcid.org/0000-0002-3057-5337</orcidid><orcidid>https://orcid.org/0000-0001-8668-6645</orcidid></search><sort><creationdate>202008</creationdate><title>Insights From Liver‐Humanized Mice on Cholesterol Lipoprotein Metabolism and LXR‐Agonist Pharmacodynamics in Humans</title><author>Minniti, Mirko E. ; Pedrelli, Matteo ; Vedin, Lise‐Lotte ; Delbès, Anne‐Sophie ; Denis, Raphaël G.P. ; Öörni, Katariina ; Sala, Claudia ; Pirazzini, Chiara ; Thiagarajan, Divya ; Nurmi, Harri J. ; Grompe, Markus ; Mills, Kevin ; Garagnani, Paolo ; Ellis, Ewa C.S. ; Strom, Stephen C. ; Luquet, Serge H. ; Wilson, Elizabeth M. ; Bial, John ; Steffensen, Knut R. ; Parini, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5812-d26e95af3f0cb6f7f013b9e5aebec8d4c864bcc4ab1fd2a0a7fb1b135091e8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Aorta</topic><topic>Benzoates - pharmacokinetics</topic><topic>Benzylamines - pharmacokinetics</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cholesteryl ester transfer protein</topic><topic>Diabetes mellitus</topic><topic>Endocrinology and metabolism</topic><topic>Hepatocytes</topic><topic>Hepatocytes - metabolism</topic><topic>Hepatocytes - transplantation</topic><topic>Hepatology</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Hépatology and Gastroenterology</topic><topic>Kexin</topic><topic>Life Sciences</topic><topic>Lipid metabolism</topic><topic>Lipoproteins</topic><topic>Lipoproteins - metabolism</topic><topic>Liver - metabolism</topic><topic>Liver - surgery</topic><topic>Liver X receptors</topic><topic>Liver X Receptors - agonists</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>mRNA</topic><topic>Original</topic><topic>Pharmacodynamics</topic><topic>Precision medicine</topic><topic>Proprotein convertases</topic><topic>Proteoglycans</topic><topic>RAG2 protein</topic><topic>Receptor density</topic><topic>RNA editing</topic><topic>Subtilisin</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minniti, Mirko E.</creatorcontrib><creatorcontrib>Pedrelli, Matteo</creatorcontrib><creatorcontrib>Vedin, Lise‐Lotte</creatorcontrib><creatorcontrib>Delbès, Anne‐Sophie</creatorcontrib><creatorcontrib>Denis, Raphaël G.P.</creatorcontrib><creatorcontrib>Öörni, Katariina</creatorcontrib><creatorcontrib>Sala, Claudia</creatorcontrib><creatorcontrib>Pirazzini, Chiara</creatorcontrib><creatorcontrib>Thiagarajan, Divya</creatorcontrib><creatorcontrib>Nurmi, Harri J.</creatorcontrib><creatorcontrib>Grompe, Markus</creatorcontrib><creatorcontrib>Mills, Kevin</creatorcontrib><creatorcontrib>Garagnani, Paolo</creatorcontrib><creatorcontrib>Ellis, Ewa C.S.</creatorcontrib><creatorcontrib>Strom, Stephen C.</creatorcontrib><creatorcontrib>Luquet, Serge H.</creatorcontrib><creatorcontrib>Wilson, Elizabeth M.</creatorcontrib><creatorcontrib>Bial, John</creatorcontrib><creatorcontrib>Steffensen, Knut R.</creatorcontrib><creatorcontrib>Parini, Paolo</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minniti, Mirko E.</au><au>Pedrelli, Matteo</au><au>Vedin, Lise‐Lotte</au><au>Delbès, Anne‐Sophie</au><au>Denis, Raphaël G.P.</au><au>Öörni, Katariina</au><au>Sala, Claudia</au><au>Pirazzini, Chiara</au><au>Thiagarajan, Divya</au><au>Nurmi, Harri J.</au><au>Grompe, Markus</au><au>Mills, Kevin</au><au>Garagnani, Paolo</au><au>Ellis, Ewa C.S.</au><au>Strom, Stephen C.</au><au>Luquet, Serge H.</au><au>Wilson, Elizabeth M.</au><au>Bial, John</au><au>Steffensen, Knut R.</au><au>Parini, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights From Liver‐Humanized Mice on Cholesterol Lipoprotein Metabolism and LXR‐Agonist Pharmacodynamics in Humans</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2020-08</date><risdate>2020</risdate><volume>72</volume><issue>2</issue><spage>656</spage><epage>670</epage><pages>656-670</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Background and Aims
Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver‐humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species‐related, physiological differences.
Approach and Results
Fah−/−, Rag2−/−, and Il2rg−/− knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human‐like pattern, characterized by a high ratio of low‐density lipoprotein to high‐density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low‐density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human‐like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level.
Conclusions
LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>31785104</pmid><doi>10.1002/hep.31052</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5476-145X</orcidid><orcidid>https://orcid.org/0000-0002-3057-5337</orcidid><orcidid>https://orcid.org/0000-0001-8668-6645</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9139 |
ispartof | Hepatology (Baltimore, Md.), 2020-08, Vol.72 (2), p.656-670 |
issn | 0270-9139 1527-3350 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_475267 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online |
subjects | Animals Aorta Benzoates - pharmacokinetics Benzylamines - pharmacokinetics Cholesterol Cholesterol - metabolism Cholesteryl ester transfer protein Diabetes mellitus Endocrinology and metabolism Hepatocytes Hepatocytes - metabolism Hepatocytes - transplantation Hepatology Human health and pathology Humans Hépatology and Gastroenterology Kexin Life Sciences Lipid metabolism Lipoproteins Lipoproteins - metabolism Liver - metabolism Liver - surgery Liver X receptors Liver X Receptors - agonists Male Metabolism Mice Mice, Knockout mRNA Original Pharmacodynamics Precision medicine Proprotein convertases Proteoglycans RAG2 protein Receptor density RNA editing Subtilisin Triglycerides |
title | Insights From Liver‐Humanized Mice on Cholesterol Lipoprotein Metabolism and LXR‐Agonist Pharmacodynamics in Humans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20From%20Liver%E2%80%90Humanized%20Mice%20on%20Cholesterol%20Lipoprotein%20Metabolism%20and%20LXR%E2%80%90Agonist%20Pharmacodynamics%20in%20Humans&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Minniti,%20Mirko%20E.&rft.date=2020-08&rft.volume=72&rft.issue=2&rft.spage=656&rft.epage=670&rft.pages=656-670&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.31052&rft_dat=%3Cproquest_swepu%3E2436890999%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436890999&rft_id=info:pmid/31785104&rfr_iscdi=true |