The transcription factor FLI1 promotes cancer progression by affecting cell cycle regulation

Binding of transcription factors to mutated DNA sequences is a likely regulator of cancer progression. Noncoding regulatory mutations such as those on the core promoter of the gene encoding human telomerase reverse transcriptase have been shown to affect gene expression in cancer. Using a protein mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2020-07, Vol.147 (1), p.189-201
Hauptverfasser: Miao, Beiping, Bauer, Andrea S., Hufnagel, Katrin, Wu, Yenan, Trajkovic‐Arsic, Marija, Pirona, Anna C., Giese, Nathalia, Taipale, Jussi, Siveke, Jens T., Hoheisel, Jörg D., Lueong, Smiths
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 189
container_title International journal of cancer
container_volume 147
creator Miao, Beiping
Bauer, Andrea S.
Hufnagel, Katrin
Wu, Yenan
Trajkovic‐Arsic, Marija
Pirona, Anna C.
Giese, Nathalia
Taipale, Jussi
Siveke, Jens T.
Hoheisel, Jörg D.
Lueong, Smiths
description Binding of transcription factors to mutated DNA sequences is a likely regulator of cancer progression. Noncoding regulatory mutations such as those on the core promoter of the gene encoding human telomerase reverse transcriptase have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA‐binding domains and subsequent functional assays, we looked for transcription factors that preferentially bind the mutant hTERT promoter and characterized their downstream effects. One of them, friend leukemia integration 1 (FLI1), which belongs to the E26 transforming‐specific family of transcription factors, exhibited particularly strong effects with respect to regulating hTERT expression, while the even better binding ELK3 did not. Depletion of FLI1 decreased expression of the genes for cyclin D1 (CCND1) and E2F transcription factor 2 (E2F2) resulting in a G1/S cell cycle arrest and in consequence a reduction of cell proliferation. FLI1 also affected CMTM7, another gene involved in G1/S transition, although by another process that suggests a balanced regulation of the tumor suppressor gene's activity via opposing regulation processes. FLI1 expression was found upregulated and correlated with an increase in CCND1 expression in pancreatic cancer and brain tumors. In non‐neoplastic lung cells, however, FLI1 depletion led to rapid progression through the cell cycle. This coincides with the fact that FLI1 is downregulated in lung tumors. Taken together, our data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1 and E2F2 in a tissue‐ and context‐dependent manner. What's new? Noncoding regulatory mutations on the core promoter of human telomerase reverse transcriptase (hTERT) have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA‐binding domains and subsequent functional assays, the authors identified an ETS transcription factor family member – FLI1 – that binds preferentially to mutated, cancer‐associated hTERT promoters, thereby modulating cell cycle progression through regulation of the G1/S transition. FLI1 could exert both oncogenic and tumor suppressive roles in a tissue‐specific manner. Taken together, the data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1, and E2F2 in a tissue‐ and context‐dependent manner.
doi_str_mv 10.1002/ijc.32831
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_474829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397224533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4261-3941b10b1eb702a2a175745af1d662bd7fb3d1b22dc9937b99b685a8066362be3</originalsourceid><addsrcrecordid>eNp10c1u1DAUBWALgehQWPACyBIbWKT1vU7ieIlGtAwaqZt2h2TZzs2QIZMMdqJq3r4OGbpAYuW_T0e-Ooy9B3EFQuB1u_dXEisJL9gKhFaZQCheslV6E5kCWV6wNzHuhQAoRP6aXUio8lIoXLEf9z-Jj8H20Yf2OLZDzxvrxyHwm-0G-DEMh2GkyL3tPYX5vAsU4-zcidumIT-2_Y576jruT74jHmg3dXaOesteNbaL9O68XrKHm6_362_Z9u52s_6yzXyOJWRS5-BAOCCnBFq0oAqVF7aBuizR1apxsgaHWHutpXJau7IqbCXKUqZ3kpcsW3LjIx0nZ46hPdhwMoNtzfnqV9qRyVVeoU7-0-LTOL8niqM5tHGewPY0TNGgRKUlohaJfvyH7ocp9GmapLRCzAspk_q8KB-GGAM1z18AYeaKTKrI_Kko2Q_nxMkdqH6WfztJ4HoBj21Hp_8nmc339RL5BInKmhc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397224533</pqid></control><display><type>article</type><title>The transcription factor FLI1 promotes cancer progression by affecting cell cycle regulation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SWEPUB Freely available online</source><creator>Miao, Beiping ; Bauer, Andrea S. ; Hufnagel, Katrin ; Wu, Yenan ; Trajkovic‐Arsic, Marija ; Pirona, Anna C. ; Giese, Nathalia ; Taipale, Jussi ; Siveke, Jens T. ; Hoheisel, Jörg D. ; Lueong, Smiths</creator><creatorcontrib>Miao, Beiping ; Bauer, Andrea S. ; Hufnagel, Katrin ; Wu, Yenan ; Trajkovic‐Arsic, Marija ; Pirona, Anna C. ; Giese, Nathalia ; Taipale, Jussi ; Siveke, Jens T. ; Hoheisel, Jörg D. ; Lueong, Smiths</creatorcontrib><description>Binding of transcription factors to mutated DNA sequences is a likely regulator of cancer progression. Noncoding regulatory mutations such as those on the core promoter of the gene encoding human telomerase reverse transcriptase have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA‐binding domains and subsequent functional assays, we looked for transcription factors that preferentially bind the mutant hTERT promoter and characterized their downstream effects. One of them, friend leukemia integration 1 (FLI1), which belongs to the E26 transforming‐specific family of transcription factors, exhibited particularly strong effects with respect to regulating hTERT expression, while the even better binding ELK3 did not. Depletion of FLI1 decreased expression of the genes for cyclin D1 (CCND1) and E2F transcription factor 2 (E2F2) resulting in a G1/S cell cycle arrest and in consequence a reduction of cell proliferation. FLI1 also affected CMTM7, another gene involved in G1/S transition, although by another process that suggests a balanced regulation of the tumor suppressor gene's activity via opposing regulation processes. FLI1 expression was found upregulated and correlated with an increase in CCND1 expression in pancreatic cancer and brain tumors. In non‐neoplastic lung cells, however, FLI1 depletion led to rapid progression through the cell cycle. This coincides with the fact that FLI1 is downregulated in lung tumors. Taken together, our data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1 and E2F2 in a tissue‐ and context‐dependent manner. What's new? Noncoding regulatory mutations on the core promoter of human telomerase reverse transcriptase (hTERT) have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA‐binding domains and subsequent functional assays, the authors identified an ETS transcription factor family member – FLI1 – that binds preferentially to mutated, cancer‐associated hTERT promoters, thereby modulating cell cycle progression through regulation of the G1/S transition. FLI1 could exert both oncogenic and tumor suppressive roles in a tissue‐specific manner. Taken together, the data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1, and E2F2 in a tissue‐ and context‐dependent manner.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.32831</identifier><identifier>PMID: 31846072</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Brain cancer ; Brain tumors ; Cancer ; Cell cycle ; Cell Cycle - physiology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Line, Tumor ; Cell proliferation ; Cyclin D1 ; Cyclin D1 - biosynthesis ; Cyclin D1 - genetics ; Cyclin D1 - metabolism ; Deoxyribonucleic acid ; Disease Progression ; DNA ; DNA microarrays ; E2F protein ; E2F2 Transcription Factor - genetics ; E2F2 Transcription Factor - metabolism ; FLI1 ; Gene expression ; Gene Expression Regulation, Neoplastic ; Gene regulation ; hTERT ; Humans ; Lung cancer ; Medical research ; Mutation ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Nucleotide sequence ; Pancreatic cancer ; Promoter Regions, Genetic ; Protein Array Analysis ; Protein arrays ; Proto-Oncogene Protein c-fli-1 - biosynthesis ; Proto-Oncogene Protein c-fli-1 - genetics ; Proto-Oncogene Protein c-fli-1 - metabolism ; RNA-directed DNA polymerase ; Telomerase ; Telomerase - genetics ; Telomerase - metabolism ; Telomerase reverse transcriptase ; transcription factor ; Transcription factors ; Tumor suppressor genes ; Tumors</subject><ispartof>International journal of cancer, 2020-07, Vol.147 (1), p.189-201</ispartof><rights>2019 The Authors. published by John Wiley &amp; Sons Ltd on behalf of UICC</rights><rights>2019 The Authors. International Journal of Cancer published by John Wiley &amp; Sons Ltd on behalf of UICC.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4261-3941b10b1eb702a2a175745af1d662bd7fb3d1b22dc9937b99b685a8066362be3</citedby><cites>FETCH-LOGICAL-c4261-3941b10b1eb702a2a175745af1d662bd7fb3d1b22dc9937b99b685a8066362be3</cites><orcidid>0000-0002-1583-5049 ; 0000-0002-2776-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.32831$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.32831$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31846072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:142668874$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Beiping</creatorcontrib><creatorcontrib>Bauer, Andrea S.</creatorcontrib><creatorcontrib>Hufnagel, Katrin</creatorcontrib><creatorcontrib>Wu, Yenan</creatorcontrib><creatorcontrib>Trajkovic‐Arsic, Marija</creatorcontrib><creatorcontrib>Pirona, Anna C.</creatorcontrib><creatorcontrib>Giese, Nathalia</creatorcontrib><creatorcontrib>Taipale, Jussi</creatorcontrib><creatorcontrib>Siveke, Jens T.</creatorcontrib><creatorcontrib>Hoheisel, Jörg D.</creatorcontrib><creatorcontrib>Lueong, Smiths</creatorcontrib><title>The transcription factor FLI1 promotes cancer progression by affecting cell cycle regulation</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Binding of transcription factors to mutated DNA sequences is a likely regulator of cancer progression. Noncoding regulatory mutations such as those on the core promoter of the gene encoding human telomerase reverse transcriptase have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA‐binding domains and subsequent functional assays, we looked for transcription factors that preferentially bind the mutant hTERT promoter and characterized their downstream effects. One of them, friend leukemia integration 1 (FLI1), which belongs to the E26 transforming‐specific family of transcription factors, exhibited particularly strong effects with respect to regulating hTERT expression, while the even better binding ELK3 did not. Depletion of FLI1 decreased expression of the genes for cyclin D1 (CCND1) and E2F transcription factor 2 (E2F2) resulting in a G1/S cell cycle arrest and in consequence a reduction of cell proliferation. FLI1 also affected CMTM7, another gene involved in G1/S transition, although by another process that suggests a balanced regulation of the tumor suppressor gene's activity via opposing regulation processes. FLI1 expression was found upregulated and correlated with an increase in CCND1 expression in pancreatic cancer and brain tumors. In non‐neoplastic lung cells, however, FLI1 depletion led to rapid progression through the cell cycle. This coincides with the fact that FLI1 is downregulated in lung tumors. Taken together, our data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1 and E2F2 in a tissue‐ and context‐dependent manner. What's new? Noncoding regulatory mutations on the core promoter of human telomerase reverse transcriptase (hTERT) have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA‐binding domains and subsequent functional assays, the authors identified an ETS transcription factor family member – FLI1 – that binds preferentially to mutated, cancer‐associated hTERT promoters, thereby modulating cell cycle progression through regulation of the G1/S transition. FLI1 could exert both oncogenic and tumor suppressive roles in a tissue‐specific manner. Taken together, the data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1, and E2F2 in a tissue‐ and context‐dependent manner.</description><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Cyclin D1</subject><subject>Cyclin D1 - biosynthesis</subject><subject>Cyclin D1 - genetics</subject><subject>Cyclin D1 - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Progression</subject><subject>DNA</subject><subject>DNA microarrays</subject><subject>E2F protein</subject><subject>E2F2 Transcription Factor - genetics</subject><subject>E2F2 Transcription Factor - metabolism</subject><subject>FLI1</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene regulation</subject><subject>hTERT</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Medical research</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Nucleotide sequence</subject><subject>Pancreatic cancer</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Array Analysis</subject><subject>Protein arrays</subject><subject>Proto-Oncogene Protein c-fli-1 - biosynthesis</subject><subject>Proto-Oncogene Protein c-fli-1 - genetics</subject><subject>Proto-Oncogene Protein c-fli-1 - metabolism</subject><subject>RNA-directed DNA polymerase</subject><subject>Telomerase</subject><subject>Telomerase - genetics</subject><subject>Telomerase - metabolism</subject><subject>Telomerase reverse transcriptase</subject><subject>transcription factor</subject><subject>Transcription factors</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp10c1u1DAUBWALgehQWPACyBIbWKT1vU7ieIlGtAwaqZt2h2TZzs2QIZMMdqJq3r4OGbpAYuW_T0e-Ooy9B3EFQuB1u_dXEisJL9gKhFaZQCheslV6E5kCWV6wNzHuhQAoRP6aXUio8lIoXLEf9z-Jj8H20Yf2OLZDzxvrxyHwm-0G-DEMh2GkyL3tPYX5vAsU4-zcidumIT-2_Y576jruT74jHmg3dXaOesteNbaL9O68XrKHm6_362_Z9u52s_6yzXyOJWRS5-BAOCCnBFq0oAqVF7aBuizR1apxsgaHWHutpXJau7IqbCXKUqZ3kpcsW3LjIx0nZ46hPdhwMoNtzfnqV9qRyVVeoU7-0-LTOL8niqM5tHGewPY0TNGgRKUlohaJfvyH7ocp9GmapLRCzAspk_q8KB-GGAM1z18AYeaKTKrI_Kko2Q_nxMkdqH6WfztJ4HoBj21Hp_8nmc339RL5BInKmhc</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Miao, Beiping</creator><creator>Bauer, Andrea S.</creator><creator>Hufnagel, Katrin</creator><creator>Wu, Yenan</creator><creator>Trajkovic‐Arsic, Marija</creator><creator>Pirona, Anna C.</creator><creator>Giese, Nathalia</creator><creator>Taipale, Jussi</creator><creator>Siveke, Jens T.</creator><creator>Hoheisel, Jörg D.</creator><creator>Lueong, Smiths</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1583-5049</orcidid><orcidid>https://orcid.org/0000-0002-2776-6706</orcidid></search><sort><creationdate>20200701</creationdate><title>The transcription factor FLI1 promotes cancer progression by affecting cell cycle regulation</title><author>Miao, Beiping ; Bauer, Andrea S. ; Hufnagel, Katrin ; Wu, Yenan ; Trajkovic‐Arsic, Marija ; Pirona, Anna C. ; Giese, Nathalia ; Taipale, Jussi ; Siveke, Jens T. ; Hoheisel, Jörg D. ; Lueong, Smiths</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4261-3941b10b1eb702a2a175745af1d662bd7fb3d1b22dc9937b99b685a8066362be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Cyclin D1</topic><topic>Cyclin D1 - biosynthesis</topic><topic>Cyclin D1 - genetics</topic><topic>Cyclin D1 - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Progression</topic><topic>DNA</topic><topic>DNA microarrays</topic><topic>E2F protein</topic><topic>E2F2 Transcription Factor - genetics</topic><topic>E2F2 Transcription Factor - metabolism</topic><topic>FLI1</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene regulation</topic><topic>hTERT</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Medical research</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Nucleotide sequence</topic><topic>Pancreatic cancer</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Array Analysis</topic><topic>Protein arrays</topic><topic>Proto-Oncogene Protein c-fli-1 - biosynthesis</topic><topic>Proto-Oncogene Protein c-fli-1 - genetics</topic><topic>Proto-Oncogene Protein c-fli-1 - metabolism</topic><topic>RNA-directed DNA polymerase</topic><topic>Telomerase</topic><topic>Telomerase - genetics</topic><topic>Telomerase - metabolism</topic><topic>Telomerase reverse transcriptase</topic><topic>transcription factor</topic><topic>Transcription factors</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Beiping</creatorcontrib><creatorcontrib>Bauer, Andrea S.</creatorcontrib><creatorcontrib>Hufnagel, Katrin</creatorcontrib><creatorcontrib>Wu, Yenan</creatorcontrib><creatorcontrib>Trajkovic‐Arsic, Marija</creatorcontrib><creatorcontrib>Pirona, Anna C.</creatorcontrib><creatorcontrib>Giese, Nathalia</creatorcontrib><creatorcontrib>Taipale, Jussi</creatorcontrib><creatorcontrib>Siveke, Jens T.</creatorcontrib><creatorcontrib>Hoheisel, Jörg D.</creatorcontrib><creatorcontrib>Lueong, Smiths</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Beiping</au><au>Bauer, Andrea S.</au><au>Hufnagel, Katrin</au><au>Wu, Yenan</au><au>Trajkovic‐Arsic, Marija</au><au>Pirona, Anna C.</au><au>Giese, Nathalia</au><au>Taipale, Jussi</au><au>Siveke, Jens T.</au><au>Hoheisel, Jörg D.</au><au>Lueong, Smiths</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transcription factor FLI1 promotes cancer progression by affecting cell cycle regulation</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>147</volume><issue>1</issue><spage>189</spage><epage>201</epage><pages>189-201</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><abstract>Binding of transcription factors to mutated DNA sequences is a likely regulator of cancer progression. Noncoding regulatory mutations such as those on the core promoter of the gene encoding human telomerase reverse transcriptase have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA‐binding domains and subsequent functional assays, we looked for transcription factors that preferentially bind the mutant hTERT promoter and characterized their downstream effects. One of them, friend leukemia integration 1 (FLI1), which belongs to the E26 transforming‐specific family of transcription factors, exhibited particularly strong effects with respect to regulating hTERT expression, while the even better binding ELK3 did not. Depletion of FLI1 decreased expression of the genes for cyclin D1 (CCND1) and E2F transcription factor 2 (E2F2) resulting in a G1/S cell cycle arrest and in consequence a reduction of cell proliferation. FLI1 also affected CMTM7, another gene involved in G1/S transition, although by another process that suggests a balanced regulation of the tumor suppressor gene's activity via opposing regulation processes. FLI1 expression was found upregulated and correlated with an increase in CCND1 expression in pancreatic cancer and brain tumors. In non‐neoplastic lung cells, however, FLI1 depletion led to rapid progression through the cell cycle. This coincides with the fact that FLI1 is downregulated in lung tumors. Taken together, our data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1 and E2F2 in a tissue‐ and context‐dependent manner. What's new? Noncoding regulatory mutations on the core promoter of human telomerase reverse transcriptase (hTERT) have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA‐binding domains and subsequent functional assays, the authors identified an ETS transcription factor family member – FLI1 – that binds preferentially to mutated, cancer‐associated hTERT promoters, thereby modulating cell cycle progression through regulation of the G1/S transition. FLI1 could exert both oncogenic and tumor suppressive roles in a tissue‐specific manner. Taken together, the data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1, and E2F2 in a tissue‐ and context‐dependent manner.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31846072</pmid><doi>10.1002/ijc.32831</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1583-5049</orcidid><orcidid>https://orcid.org/0000-0002-2776-6706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7136
ispartof International journal of cancer, 2020-07, Vol.147 (1), p.189-201
issn 0020-7136
1097-0215
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_474829
source MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; SWEPUB Freely available online
subjects Brain cancer
Brain tumors
Cancer
Cell cycle
Cell Cycle - physiology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Line, Tumor
Cell proliferation
Cyclin D1
Cyclin D1 - biosynthesis
Cyclin D1 - genetics
Cyclin D1 - metabolism
Deoxyribonucleic acid
Disease Progression
DNA
DNA microarrays
E2F protein
E2F2 Transcription Factor - genetics
E2F2 Transcription Factor - metabolism
FLI1
Gene expression
Gene Expression Regulation, Neoplastic
Gene regulation
hTERT
Humans
Lung cancer
Medical research
Mutation
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Nucleotide sequence
Pancreatic cancer
Promoter Regions, Genetic
Protein Array Analysis
Protein arrays
Proto-Oncogene Protein c-fli-1 - biosynthesis
Proto-Oncogene Protein c-fli-1 - genetics
Proto-Oncogene Protein c-fli-1 - metabolism
RNA-directed DNA polymerase
Telomerase
Telomerase - genetics
Telomerase - metabolism
Telomerase reverse transcriptase
transcription factor
Transcription factors
Tumor suppressor genes
Tumors
title The transcription factor FLI1 promotes cancer progression by affecting cell cycle regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transcription%20factor%20FLI1%20promotes%20cancer%20progression%20by%20affecting%20cell%20cycle%20regulation&rft.jtitle=International%20journal%20of%20cancer&rft.au=Miao,%20Beiping&rft.date=2020-07-01&rft.volume=147&rft.issue=1&rft.spage=189&rft.epage=201&rft.pages=189-201&rft.issn=0020-7136&rft.eissn=1097-0215&rft_id=info:doi/10.1002/ijc.32831&rft_dat=%3Cproquest_swepu%3E2397224533%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397224533&rft_id=info:pmid/31846072&rfr_iscdi=true