Generalized parametric cure models for relative survival
Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2020-07, Vol.62 (4), p.989-1011 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1011 |
---|---|
container_issue | 4 |
container_start_page | 989 |
container_title | Biometrical journal |
container_volume | 62 |
creator | Jakobsen, Lasse Hjort Bøgsted, Martin Clements, Mark |
description | Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival function, respectively. The main parameters of interest in cure models are the proportion of individuals who are cured, termed the cure proportion, and the survival function of the uncured individuals. Although numerous cure models have been proposed in the statistical literature, there is no consensus on how to formulate these. We introduce a general parametric formulation of mixture cure models and a new class of cure models, termed latent cure models, together with a general estimation framework and software, which enable fitting of a wide range of different models. Through simulations, we assess the statistical properties of the models with respect to the cure proportion and the survival of the uncured individuals. Finally, we illustrate the models using survival data on colon cancer, which typically display a plateau in the relative survival. As demonstrated in the simulations, mixture cure models which are not guaranteed to be constant after a finite time point, tend to produce accurate estimates of the cure proportion and the survival of the uncured. However, these models are very unstable in certain cases due to identifiability issues, whereas LC models generally provide stable results at the price of more biased estimates. |
doi_str_mv | 10.1002/bimj.201900056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_474154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342355403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4060-5f568ede777337c5d08b0177cdbaa094b33bffd8bb60e8d8b262e5f367f295363</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgaB8rIwoEgtLyvkrTkaooICKWGC27OQiuSRNsZui8usxSunAwnSW9fjku5eQcwpjCsCurWvnYwa0AACZ7ZERlYymAni2T0bAGU95LtQROQ5hHkkBgh2SI04LqQoKI5JPcYHeNO4Lq2RpvGlx5V2ZlL3HpO0qbEJSdz7x2JiVW2MSer92a9OckoPaNAHPtvWEvN3fvU4e0tnL9HFyM0tLARmkspZZjhUqpThXpawgt0CVKitrDBTCcm7rusqtzQDzWFnGUNY8UzUrJM_4CUmHvuETl73VS-9a4ze6M05vr97jCbVQgkoR_dXgl7776DGsdOtCiU1jFtj1QTMuGJcybijSyz903vV-EafRTNCCFTSXLKrxoErfheCx3n2Bgv7JQP9koHcZxAcX27a9bbHa8d-lRyAG8Oka3PzTTt8-Pj8xyIF_AylNkV8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419291852</pqid></control><display><type>article</type><title>Generalized parametric cure models for relative survival</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jakobsen, Lasse Hjort ; Bøgsted, Martin ; Clements, Mark</creator><creatorcontrib>Jakobsen, Lasse Hjort ; Bøgsted, Martin ; Clements, Mark</creatorcontrib><description>Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival function, respectively. The main parameters of interest in cure models are the proportion of individuals who are cured, termed the cure proportion, and the survival function of the uncured individuals. Although numerous cure models have been proposed in the statistical literature, there is no consensus on how to formulate these. We introduce a general parametric formulation of mixture cure models and a new class of cure models, termed latent cure models, together with a general estimation framework and software, which enable fitting of a wide range of different models. Through simulations, we assess the statistical properties of the models with respect to the cure proportion and the survival of the uncured individuals. Finally, we illustrate the models using survival data on colon cancer, which typically display a plateau in the relative survival. As demonstrated in the simulations, mixture cure models which are not guaranteed to be constant after a finite time point, tend to produce accurate estimates of the cure proportion and the survival of the uncured. However, these models are very unstable in certain cases due to identifiability issues, whereas LC models generally provide stable results at the price of more biased estimates.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201900056</identifier><identifier>PMID: 31957910</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>Colon ; Colon cancer ; Colorectal cancer ; Computer simulation ; cure models ; Mathematical models ; parametric models ; Parametric statistics ; relative survival ; splines ; Statistical analysis ; Survival</subject><ispartof>Biometrical journal, 2020-07, Vol.62 (4), p.989-1011</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4060-5f568ede777337c5d08b0177cdbaa094b33bffd8bb60e8d8b262e5f367f295363</citedby><cites>FETCH-LOGICAL-c4060-5f568ede777337c5d08b0177cdbaa094b33bffd8bb60e8d8b262e5f367f295363</cites><orcidid>0000-0001-6575-7686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.201900056$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.201900056$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31957910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:142763704$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jakobsen, Lasse Hjort</creatorcontrib><creatorcontrib>Bøgsted, Martin</creatorcontrib><creatorcontrib>Clements, Mark</creatorcontrib><title>Generalized parametric cure models for relative survival</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival function, respectively. The main parameters of interest in cure models are the proportion of individuals who are cured, termed the cure proportion, and the survival function of the uncured individuals. Although numerous cure models have been proposed in the statistical literature, there is no consensus on how to formulate these. We introduce a general parametric formulation of mixture cure models and a new class of cure models, termed latent cure models, together with a general estimation framework and software, which enable fitting of a wide range of different models. Through simulations, we assess the statistical properties of the models with respect to the cure proportion and the survival of the uncured individuals. Finally, we illustrate the models using survival data on colon cancer, which typically display a plateau in the relative survival. As demonstrated in the simulations, mixture cure models which are not guaranteed to be constant after a finite time point, tend to produce accurate estimates of the cure proportion and the survival of the uncured. However, these models are very unstable in certain cases due to identifiability issues, whereas LC models generally provide stable results at the price of more biased estimates.</description><subject>Colon</subject><subject>Colon cancer</subject><subject>Colorectal cancer</subject><subject>Computer simulation</subject><subject>cure models</subject><subject>Mathematical models</subject><subject>parametric models</subject><subject>Parametric statistics</subject><subject>relative survival</subject><subject>splines</subject><subject>Statistical analysis</subject><subject>Survival</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0T1PwzAQBmALgaB8rIwoEgtLyvkrTkaooICKWGC27OQiuSRNsZui8usxSunAwnSW9fjku5eQcwpjCsCurWvnYwa0AACZ7ZERlYymAni2T0bAGU95LtQROQ5hHkkBgh2SI04LqQoKI5JPcYHeNO4Lq2RpvGlx5V2ZlL3HpO0qbEJSdz7x2JiVW2MSer92a9OckoPaNAHPtvWEvN3fvU4e0tnL9HFyM0tLARmkspZZjhUqpThXpawgt0CVKitrDBTCcm7rusqtzQDzWFnGUNY8UzUrJM_4CUmHvuETl73VS-9a4ze6M05vr97jCbVQgkoR_dXgl7776DGsdOtCiU1jFtj1QTMuGJcybijSyz903vV-EafRTNCCFTSXLKrxoErfheCx3n2Bgv7JQP9koHcZxAcX27a9bbHa8d-lRyAG8Oka3PzTTt8-Pj8xyIF_AylNkV8</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Jakobsen, Lasse Hjort</creator><creator>Bøgsted, Martin</creator><creator>Clements, Mark</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-6575-7686</orcidid></search><sort><creationdate>202007</creationdate><title>Generalized parametric cure models for relative survival</title><author>Jakobsen, Lasse Hjort ; Bøgsted, Martin ; Clements, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4060-5f568ede777337c5d08b0177cdbaa094b33bffd8bb60e8d8b262e5f367f295363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Colon</topic><topic>Colon cancer</topic><topic>Colorectal cancer</topic><topic>Computer simulation</topic><topic>cure models</topic><topic>Mathematical models</topic><topic>parametric models</topic><topic>Parametric statistics</topic><topic>relative survival</topic><topic>splines</topic><topic>Statistical analysis</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jakobsen, Lasse Hjort</creatorcontrib><creatorcontrib>Bøgsted, Martin</creatorcontrib><creatorcontrib>Clements, Mark</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jakobsen, Lasse Hjort</au><au>Bøgsted, Martin</au><au>Clements, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized parametric cure models for relative survival</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2020-07</date><risdate>2020</risdate><volume>62</volume><issue>4</issue><spage>989</spage><epage>1011</epage><pages>989-1011</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival function, respectively. The main parameters of interest in cure models are the proportion of individuals who are cured, termed the cure proportion, and the survival function of the uncured individuals. Although numerous cure models have been proposed in the statistical literature, there is no consensus on how to formulate these. We introduce a general parametric formulation of mixture cure models and a new class of cure models, termed latent cure models, together with a general estimation framework and software, which enable fitting of a wide range of different models. Through simulations, we assess the statistical properties of the models with respect to the cure proportion and the survival of the uncured individuals. Finally, we illustrate the models using survival data on colon cancer, which typically display a plateau in the relative survival. As demonstrated in the simulations, mixture cure models which are not guaranteed to be constant after a finite time point, tend to produce accurate estimates of the cure proportion and the survival of the uncured. However, these models are very unstable in certain cases due to identifiability issues, whereas LC models generally provide stable results at the price of more biased estimates.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><pmid>31957910</pmid><doi>10.1002/bimj.201900056</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6575-7686</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2020-07, Vol.62 (4), p.989-1011 |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_474154 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Colon Colon cancer Colorectal cancer Computer simulation cure models Mathematical models parametric models Parametric statistics relative survival splines Statistical analysis Survival |
title | Generalized parametric cure models for relative survival |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20parametric%20cure%20models%20for%20relative%20survival&rft.jtitle=Biometrical%20journal&rft.au=Jakobsen,%20Lasse%20Hjort&rft.date=2020-07&rft.volume=62&rft.issue=4&rft.spage=989&rft.epage=1011&rft.pages=989-1011&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201900056&rft_dat=%3Cproquest_swepu%3E2342355403%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419291852&rft_id=info:pmid/31957910&rfr_iscdi=true |