Generalized parametric cure models for relative survival

Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2020-07, Vol.62 (4), p.989-1011
Hauptverfasser: Jakobsen, Lasse Hjort, Bøgsted, Martin, Clements, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1011
container_issue 4
container_start_page 989
container_title Biometrical journal
container_volume 62
creator Jakobsen, Lasse Hjort
Bøgsted, Martin
Clements, Mark
description Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival function, respectively. The main parameters of interest in cure models are the proportion of individuals who are cured, termed the cure proportion, and the survival function of the uncured individuals. Although numerous cure models have been proposed in the statistical literature, there is no consensus on how to formulate these. We introduce a general parametric formulation of mixture cure models and a new class of cure models, termed latent cure models, together with a general estimation framework and software, which enable fitting of a wide range of different models. Through simulations, we assess the statistical properties of the models with respect to the cure proportion and the survival of the uncured individuals. Finally, we illustrate the models using survival data on colon cancer, which typically display a plateau in the relative survival. As demonstrated in the simulations, mixture cure models which are not guaranteed to be constant after a finite time point, tend to produce accurate estimates of the cure proportion and the survival of the uncured. However, these models are very unstable in certain cases due to identifiability issues, whereas LC models generally provide stable results at the price of more biased estimates.
doi_str_mv 10.1002/bimj.201900056
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_474154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342355403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4060-5f568ede777337c5d08b0177cdbaa094b33bffd8bb60e8d8b262e5f367f295363</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgaB8rIwoEgtLyvkrTkaooICKWGC27OQiuSRNsZui8usxSunAwnSW9fjku5eQcwpjCsCurWvnYwa0AACZ7ZERlYymAni2T0bAGU95LtQROQ5hHkkBgh2SI04LqQoKI5JPcYHeNO4Lq2RpvGlx5V2ZlL3HpO0qbEJSdz7x2JiVW2MSer92a9OckoPaNAHPtvWEvN3fvU4e0tnL9HFyM0tLARmkspZZjhUqpThXpawgt0CVKitrDBTCcm7rusqtzQDzWFnGUNY8UzUrJM_4CUmHvuETl73VS-9a4ze6M05vr97jCbVQgkoR_dXgl7776DGsdOtCiU1jFtj1QTMuGJcybijSyz903vV-EafRTNCCFTSXLKrxoErfheCx3n2Bgv7JQP9koHcZxAcX27a9bbHa8d-lRyAG8Oka3PzTTt8-Pj8xyIF_AylNkV8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419291852</pqid></control><display><type>article</type><title>Generalized parametric cure models for relative survival</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jakobsen, Lasse Hjort ; Bøgsted, Martin ; Clements, Mark</creator><creatorcontrib>Jakobsen, Lasse Hjort ; Bøgsted, Martin ; Clements, Mark</creatorcontrib><description>Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival function, respectively. The main parameters of interest in cure models are the proportion of individuals who are cured, termed the cure proportion, and the survival function of the uncured individuals. Although numerous cure models have been proposed in the statistical literature, there is no consensus on how to formulate these. We introduce a general parametric formulation of mixture cure models and a new class of cure models, termed latent cure models, together with a general estimation framework and software, which enable fitting of a wide range of different models. Through simulations, we assess the statistical properties of the models with respect to the cure proportion and the survival of the uncured individuals. Finally, we illustrate the models using survival data on colon cancer, which typically display a plateau in the relative survival. As demonstrated in the simulations, mixture cure models which are not guaranteed to be constant after a finite time point, tend to produce accurate estimates of the cure proportion and the survival of the uncured. However, these models are very unstable in certain cases due to identifiability issues, whereas LC models generally provide stable results at the price of more biased estimates.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201900056</identifier><identifier>PMID: 31957910</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Colon ; Colon cancer ; Colorectal cancer ; Computer simulation ; cure models ; Mathematical models ; parametric models ; Parametric statistics ; relative survival ; splines ; Statistical analysis ; Survival</subject><ispartof>Biometrical journal, 2020-07, Vol.62 (4), p.989-1011</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4060-5f568ede777337c5d08b0177cdbaa094b33bffd8bb60e8d8b262e5f367f295363</citedby><cites>FETCH-LOGICAL-c4060-5f568ede777337c5d08b0177cdbaa094b33bffd8bb60e8d8b262e5f367f295363</cites><orcidid>0000-0001-6575-7686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.201900056$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.201900056$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31957910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:142763704$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jakobsen, Lasse Hjort</creatorcontrib><creatorcontrib>Bøgsted, Martin</creatorcontrib><creatorcontrib>Clements, Mark</creatorcontrib><title>Generalized parametric cure models for relative survival</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival function, respectively. The main parameters of interest in cure models are the proportion of individuals who are cured, termed the cure proportion, and the survival function of the uncured individuals. Although numerous cure models have been proposed in the statistical literature, there is no consensus on how to formulate these. We introduce a general parametric formulation of mixture cure models and a new class of cure models, termed latent cure models, together with a general estimation framework and software, which enable fitting of a wide range of different models. Through simulations, we assess the statistical properties of the models with respect to the cure proportion and the survival of the uncured individuals. Finally, we illustrate the models using survival data on colon cancer, which typically display a plateau in the relative survival. As demonstrated in the simulations, mixture cure models which are not guaranteed to be constant after a finite time point, tend to produce accurate estimates of the cure proportion and the survival of the uncured. However, these models are very unstable in certain cases due to identifiability issues, whereas LC models generally provide stable results at the price of more biased estimates.</description><subject>Colon</subject><subject>Colon cancer</subject><subject>Colorectal cancer</subject><subject>Computer simulation</subject><subject>cure models</subject><subject>Mathematical models</subject><subject>parametric models</subject><subject>Parametric statistics</subject><subject>relative survival</subject><subject>splines</subject><subject>Statistical analysis</subject><subject>Survival</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0T1PwzAQBmALgaB8rIwoEgtLyvkrTkaooICKWGC27OQiuSRNsZui8usxSunAwnSW9fjku5eQcwpjCsCurWvnYwa0AACZ7ZERlYymAni2T0bAGU95LtQROQ5hHkkBgh2SI04LqQoKI5JPcYHeNO4Lq2RpvGlx5V2ZlL3HpO0qbEJSdz7x2JiVW2MSer92a9OckoPaNAHPtvWEvN3fvU4e0tnL9HFyM0tLARmkspZZjhUqpThXpawgt0CVKitrDBTCcm7rusqtzQDzWFnGUNY8UzUrJM_4CUmHvuETl73VS-9a4ze6M05vr97jCbVQgkoR_dXgl7776DGsdOtCiU1jFtj1QTMuGJcybijSyz903vV-EafRTNCCFTSXLKrxoErfheCx3n2Bgv7JQP9koHcZxAcX27a9bbHa8d-lRyAG8Oka3PzTTt8-Pj8xyIF_AylNkV8</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Jakobsen, Lasse Hjort</creator><creator>Bøgsted, Martin</creator><creator>Clements, Mark</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-6575-7686</orcidid></search><sort><creationdate>202007</creationdate><title>Generalized parametric cure models for relative survival</title><author>Jakobsen, Lasse Hjort ; Bøgsted, Martin ; Clements, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4060-5f568ede777337c5d08b0177cdbaa094b33bffd8bb60e8d8b262e5f367f295363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Colon</topic><topic>Colon cancer</topic><topic>Colorectal cancer</topic><topic>Computer simulation</topic><topic>cure models</topic><topic>Mathematical models</topic><topic>parametric models</topic><topic>Parametric statistics</topic><topic>relative survival</topic><topic>splines</topic><topic>Statistical analysis</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jakobsen, Lasse Hjort</creatorcontrib><creatorcontrib>Bøgsted, Martin</creatorcontrib><creatorcontrib>Clements, Mark</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jakobsen, Lasse Hjort</au><au>Bøgsted, Martin</au><au>Clements, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized parametric cure models for relative survival</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2020-07</date><risdate>2020</risdate><volume>62</volume><issue>4</issue><spage>989</spage><epage>1011</epage><pages>989-1011</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Cure models are used in time‐to‐event analysis when not all individuals are expected to experience the event of interest, or when the survival of the considered individuals reaches the same level as the general population. These scenarios correspond to a plateau in the survival and relative survival function, respectively. The main parameters of interest in cure models are the proportion of individuals who are cured, termed the cure proportion, and the survival function of the uncured individuals. Although numerous cure models have been proposed in the statistical literature, there is no consensus on how to formulate these. We introduce a general parametric formulation of mixture cure models and a new class of cure models, termed latent cure models, together with a general estimation framework and software, which enable fitting of a wide range of different models. Through simulations, we assess the statistical properties of the models with respect to the cure proportion and the survival of the uncured individuals. Finally, we illustrate the models using survival data on colon cancer, which typically display a plateau in the relative survival. As demonstrated in the simulations, mixture cure models which are not guaranteed to be constant after a finite time point, tend to produce accurate estimates of the cure proportion and the survival of the uncured. However, these models are very unstable in certain cases due to identifiability issues, whereas LC models generally provide stable results at the price of more biased estimates.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>31957910</pmid><doi>10.1002/bimj.201900056</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6575-7686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2020-07, Vol.62 (4), p.989-1011
issn 0323-3847
1521-4036
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_474154
source Wiley Online Library Journals Frontfile Complete
subjects Colon
Colon cancer
Colorectal cancer
Computer simulation
cure models
Mathematical models
parametric models
Parametric statistics
relative survival
splines
Statistical analysis
Survival
title Generalized parametric cure models for relative survival
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20parametric%20cure%20models%20for%20relative%20survival&rft.jtitle=Biometrical%20journal&rft.au=Jakobsen,%20Lasse%20Hjort&rft.date=2020-07&rft.volume=62&rft.issue=4&rft.spage=989&rft.epage=1011&rft.pages=989-1011&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201900056&rft_dat=%3Cproquest_swepu%3E2342355403%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419291852&rft_id=info:pmid/31957910&rfr_iscdi=true