Evaluating severity of white matter lesions from computed tomography images with convolutional neural network
Purpose Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatically segmented from CT images using a convolutional...
Gespeichert in:
Veröffentlicht in: | Neuroradiology 2020-10, Vol.62 (10), p.1257-1263 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1263 |
---|---|
container_issue | 10 |
container_start_page | 1257 |
container_title | Neuroradiology |
container_volume | 62 |
creator | Pitkänen, Johanna Koikkalainen, Juha Nieminen, Tuomas Marinkovic, Ivan Curtze, Sami Sibolt, Gerli Jokinen, Hanna Rueckert, Daniel Barkhof, Frederik Schmidt, Reinhold Pantoni, Leonardo Scheltens, Philip Wahlund, Lars-Olof Korvenoja, Antti Lötjönen, Jyrki Erkinjuntti, Timo Melkas, Susanna |
description | Purpose
Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatically segmented from CT images using a convolutional neural network (CNN). The second aim was to compare CT segmentation with MRI segmentation.
Methods
The brain images from the Helsinki University Hospital clinical image archive were systematically screened to make CT-MRI image pairs. Selection criteria for the study were that both CT and MRI images were acquired within 6 weeks. In total, 147 image pairs were included. We used CNN to segment WML from CT images. Training and testing of CNN for CT was performed using 10-fold cross-validation, and the segmentation results were compared with the corresponding segmentations from MRI.
Results
A Pearson correlation of 0.94 was obtained between the automatic WML volumes of MRI and CT segmentations. The average Dice similarity index validating the overlap between CT and FLAIR segmentations was 0.68 for the Fazekas 3 group.
Conclusion
CNN-based segmentation of CT images may provide a means to evaluate the severity of WML and establish a link between CT WML patterns and the current standard MRI-based visual rating scale. |
doi_str_mv | 10.1007/s00234-020-02410-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_472076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389211394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-4769b44eb90d9199f2d719dec8e2a60e9564a195f77022aa59aefeb0b5e0e2c83</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCILgt_gAOyxIVLYOw46_iChKryIVXqpT1bTjLJpk3ixXZ2tf--s92lUA49WGP5vXnzPI-x9wI-CwD9JQLIXGUggY4SkMkXbCFULjNhJLxkC8LLLDcKztibGG8BINe5fs3OcilLQeCCjRdbN8wu9VPHI24x9GnPfct36z4hH11KGPiAsfdT5G3wI6_9uJkTNjz50XfBbdZ73o-uw8h3fVoTPm39MCfqcAOfcA4PJe18uHvLXrVuiPjuVJfs5vvF9fnP7PLqx6_zb5dZXQiZMqVXplIKKwONEca0stHCNFiXKN0K0BQr5YQpWq1BSucK47DFCqoCAWVd5kuWHXXjDjdzZTeBHIa99a63p6c7uqFVWoJeEf_rkU_IiE2NUyLXT9qeIlO_tp3fWq10adRh4KeTQPC_Z4zJjn2scRjchH6OVualkUJQFkT9-B_11s-BdkUspciN0HBwJI-sOvgYA7aPZgTYQ_r2mL6l9O1D-jRjyT78-43Hlj9xEyE_7YWgqcPwd_Yzsvftgr5j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440761706</pqid></control><display><type>article</type><title>Evaluating severity of white matter lesions from computed tomography images with convolutional neural network</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pitkänen, Johanna ; Koikkalainen, Juha ; Nieminen, Tuomas ; Marinkovic, Ivan ; Curtze, Sami ; Sibolt, Gerli ; Jokinen, Hanna ; Rueckert, Daniel ; Barkhof, Frederik ; Schmidt, Reinhold ; Pantoni, Leonardo ; Scheltens, Philip ; Wahlund, Lars-Olof ; Korvenoja, Antti ; Lötjönen, Jyrki ; Erkinjuntti, Timo ; Melkas, Susanna</creator><creatorcontrib>Pitkänen, Johanna ; Koikkalainen, Juha ; Nieminen, Tuomas ; Marinkovic, Ivan ; Curtze, Sami ; Sibolt, Gerli ; Jokinen, Hanna ; Rueckert, Daniel ; Barkhof, Frederik ; Schmidt, Reinhold ; Pantoni, Leonardo ; Scheltens, Philip ; Wahlund, Lars-Olof ; Korvenoja, Antti ; Lötjönen, Jyrki ; Erkinjuntti, Timo ; Melkas, Susanna</creatorcontrib><description>Purpose
Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatically segmented from CT images using a convolutional neural network (CNN). The second aim was to compare CT segmentation with MRI segmentation.
Methods
The brain images from the Helsinki University Hospital clinical image archive were systematically screened to make CT-MRI image pairs. Selection criteria for the study were that both CT and MRI images were acquired within 6 weeks. In total, 147 image pairs were included. We used CNN to segment WML from CT images. Training and testing of CNN for CT was performed using 10-fold cross-validation, and the segmentation results were compared with the corresponding segmentations from MRI.
Results
A Pearson correlation of 0.94 was obtained between the automatic WML volumes of MRI and CT segmentations. The average Dice similarity index validating the overlap between CT and FLAIR segmentations was 0.68 for the Fazekas 3 group.
Conclusion
CNN-based segmentation of CT images may provide a means to evaluate the severity of WML and establish a link between CT WML patterns and the current standard MRI-based visual rating scale.</description><identifier>ISSN: 0028-3940</identifier><identifier>EISSN: 1432-1920</identifier><identifier>DOI: 10.1007/s00234-020-02410-2</identifier><identifier>PMID: 32281028</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aged ; Artificial neural networks ; Computed tomography ; Diagnostic Neuroradiology ; Female ; Humans ; Image acquisition ; Image Interpretation, Computer-Assisted ; Image processing ; Image segmentation ; Imaging ; Imaging, Three-Dimensional ; Lesions ; Leukoaraiosis - diagnostic imaging ; Leukoaraiosis - pathology ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Medicine ; Medicine & Public Health ; Neural networks ; Neural Networks, Computer ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Radiology ; Severity of Illness Index ; Software ; Substantia alba ; Tomography ; Tomography, X-Ray Computed</subject><ispartof>Neuroradiology, 2020-10, Vol.62 (10), p.1257-1263</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-4769b44eb90d9199f2d719dec8e2a60e9564a195f77022aa59aefeb0b5e0e2c83</citedby><cites>FETCH-LOGICAL-c512t-4769b44eb90d9199f2d719dec8e2a60e9564a195f77022aa59aefeb0b5e0e2c83</cites><orcidid>0000-0002-9495-7692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00234-020-02410-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00234-020-02410-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32281028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:143380649$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pitkänen, Johanna</creatorcontrib><creatorcontrib>Koikkalainen, Juha</creatorcontrib><creatorcontrib>Nieminen, Tuomas</creatorcontrib><creatorcontrib>Marinkovic, Ivan</creatorcontrib><creatorcontrib>Curtze, Sami</creatorcontrib><creatorcontrib>Sibolt, Gerli</creatorcontrib><creatorcontrib>Jokinen, Hanna</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Schmidt, Reinhold</creatorcontrib><creatorcontrib>Pantoni, Leonardo</creatorcontrib><creatorcontrib>Scheltens, Philip</creatorcontrib><creatorcontrib>Wahlund, Lars-Olof</creatorcontrib><creatorcontrib>Korvenoja, Antti</creatorcontrib><creatorcontrib>Lötjönen, Jyrki</creatorcontrib><creatorcontrib>Erkinjuntti, Timo</creatorcontrib><creatorcontrib>Melkas, Susanna</creatorcontrib><title>Evaluating severity of white matter lesions from computed tomography images with convolutional neural network</title><title>Neuroradiology</title><addtitle>Neuroradiology</addtitle><addtitle>Neuroradiology</addtitle><description>Purpose
Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatically segmented from CT images using a convolutional neural network (CNN). The second aim was to compare CT segmentation with MRI segmentation.
Methods
The brain images from the Helsinki University Hospital clinical image archive were systematically screened to make CT-MRI image pairs. Selection criteria for the study were that both CT and MRI images were acquired within 6 weeks. In total, 147 image pairs were included. We used CNN to segment WML from CT images. Training and testing of CNN for CT was performed using 10-fold cross-validation, and the segmentation results were compared with the corresponding segmentations from MRI.
Results
A Pearson correlation of 0.94 was obtained between the automatic WML volumes of MRI and CT segmentations. The average Dice similarity index validating the overlap between CT and FLAIR segmentations was 0.68 for the Fazekas 3 group.
Conclusion
CNN-based segmentation of CT images may provide a means to evaluate the severity of WML and establish a link between CT WML patterns and the current standard MRI-based visual rating scale.</description><subject>Aged</subject><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Diagnostic Neuroradiology</subject><subject>Female</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional</subject><subject>Lesions</subject><subject>Leukoaraiosis - diagnostic imaging</subject><subject>Leukoaraiosis - pathology</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Radiology</subject><subject>Severity of Illness Index</subject><subject>Software</subject><subject>Substantia alba</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed</subject><issn>0028-3940</issn><issn>1432-1920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNp9UU1v1DAQtRCILgt_gAOyxIVLYOw46_iChKryIVXqpT1bTjLJpk3ixXZ2tf--s92lUA49WGP5vXnzPI-x9wI-CwD9JQLIXGUggY4SkMkXbCFULjNhJLxkC8LLLDcKztibGG8BINe5fs3OcilLQeCCjRdbN8wu9VPHI24x9GnPfct36z4hH11KGPiAsfdT5G3wI6_9uJkTNjz50XfBbdZ73o-uw8h3fVoTPm39MCfqcAOfcA4PJe18uHvLXrVuiPjuVJfs5vvF9fnP7PLqx6_zb5dZXQiZMqVXplIKKwONEca0stHCNFiXKN0K0BQr5YQpWq1BSucK47DFCqoCAWVd5kuWHXXjDjdzZTeBHIa99a63p6c7uqFVWoJeEf_rkU_IiE2NUyLXT9qeIlO_tp3fWq10adRh4KeTQPC_Z4zJjn2scRjchH6OVualkUJQFkT9-B_11s-BdkUspciN0HBwJI-sOvgYA7aPZgTYQ_r2mL6l9O1D-jRjyT78-43Hlj9xEyE_7YWgqcPwd_Yzsvftgr5j</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Pitkänen, Johanna</creator><creator>Koikkalainen, Juha</creator><creator>Nieminen, Tuomas</creator><creator>Marinkovic, Ivan</creator><creator>Curtze, Sami</creator><creator>Sibolt, Gerli</creator><creator>Jokinen, Hanna</creator><creator>Rueckert, Daniel</creator><creator>Barkhof, Frederik</creator><creator>Schmidt, Reinhold</creator><creator>Pantoni, Leonardo</creator><creator>Scheltens, Philip</creator><creator>Wahlund, Lars-Olof</creator><creator>Korvenoja, Antti</creator><creator>Lötjönen, Jyrki</creator><creator>Erkinjuntti, Timo</creator><creator>Melkas, Susanna</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-9495-7692</orcidid></search><sort><creationdate>20201001</creationdate><title>Evaluating severity of white matter lesions from computed tomography images with convolutional neural network</title><author>Pitkänen, Johanna ; Koikkalainen, Juha ; Nieminen, Tuomas ; Marinkovic, Ivan ; Curtze, Sami ; Sibolt, Gerli ; Jokinen, Hanna ; Rueckert, Daniel ; Barkhof, Frederik ; Schmidt, Reinhold ; Pantoni, Leonardo ; Scheltens, Philip ; Wahlund, Lars-Olof ; Korvenoja, Antti ; Lötjönen, Jyrki ; Erkinjuntti, Timo ; Melkas, Susanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-4769b44eb90d9199f2d719dec8e2a60e9564a195f77022aa59aefeb0b5e0e2c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Diagnostic Neuroradiology</topic><topic>Female</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional</topic><topic>Lesions</topic><topic>Leukoaraiosis - diagnostic imaging</topic><topic>Leukoaraiosis - pathology</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Radiology</topic><topic>Severity of Illness Index</topic><topic>Software</topic><topic>Substantia alba</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pitkänen, Johanna</creatorcontrib><creatorcontrib>Koikkalainen, Juha</creatorcontrib><creatorcontrib>Nieminen, Tuomas</creatorcontrib><creatorcontrib>Marinkovic, Ivan</creatorcontrib><creatorcontrib>Curtze, Sami</creatorcontrib><creatorcontrib>Sibolt, Gerli</creatorcontrib><creatorcontrib>Jokinen, Hanna</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Schmidt, Reinhold</creatorcontrib><creatorcontrib>Pantoni, Leonardo</creatorcontrib><creatorcontrib>Scheltens, Philip</creatorcontrib><creatorcontrib>Wahlund, Lars-Olof</creatorcontrib><creatorcontrib>Korvenoja, Antti</creatorcontrib><creatorcontrib>Lötjönen, Jyrki</creatorcontrib><creatorcontrib>Erkinjuntti, Timo</creatorcontrib><creatorcontrib>Melkas, Susanna</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Neuroradiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pitkänen, Johanna</au><au>Koikkalainen, Juha</au><au>Nieminen, Tuomas</au><au>Marinkovic, Ivan</au><au>Curtze, Sami</au><au>Sibolt, Gerli</au><au>Jokinen, Hanna</au><au>Rueckert, Daniel</au><au>Barkhof, Frederik</au><au>Schmidt, Reinhold</au><au>Pantoni, Leonardo</au><au>Scheltens, Philip</au><au>Wahlund, Lars-Olof</au><au>Korvenoja, Antti</au><au>Lötjönen, Jyrki</au><au>Erkinjuntti, Timo</au><au>Melkas, Susanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating severity of white matter lesions from computed tomography images with convolutional neural network</atitle><jtitle>Neuroradiology</jtitle><stitle>Neuroradiology</stitle><addtitle>Neuroradiology</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>62</volume><issue>10</issue><spage>1257</spage><epage>1263</epage><pages>1257-1263</pages><issn>0028-3940</issn><eissn>1432-1920</eissn><abstract>Purpose
Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatically segmented from CT images using a convolutional neural network (CNN). The second aim was to compare CT segmentation with MRI segmentation.
Methods
The brain images from the Helsinki University Hospital clinical image archive were systematically screened to make CT-MRI image pairs. Selection criteria for the study were that both CT and MRI images were acquired within 6 weeks. In total, 147 image pairs were included. We used CNN to segment WML from CT images. Training and testing of CNN for CT was performed using 10-fold cross-validation, and the segmentation results were compared with the corresponding segmentations from MRI.
Results
A Pearson correlation of 0.94 was obtained between the automatic WML volumes of MRI and CT segmentations. The average Dice similarity index validating the overlap between CT and FLAIR segmentations was 0.68 for the Fazekas 3 group.
Conclusion
CNN-based segmentation of CT images may provide a means to evaluate the severity of WML and establish a link between CT WML patterns and the current standard MRI-based visual rating scale.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32281028</pmid><doi>10.1007/s00234-020-02410-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9495-7692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3940 |
ispartof | Neuroradiology, 2020-10, Vol.62 (10), p.1257-1263 |
issn | 0028-3940 1432-1920 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_472076 |
source | MEDLINE; SWEPUB Freely available online; SpringerLink Journals - AutoHoldings |
subjects | Aged Artificial neural networks Computed tomography Diagnostic Neuroradiology Female Humans Image acquisition Image Interpretation, Computer-Assisted Image processing Image segmentation Imaging Imaging, Three-Dimensional Lesions Leukoaraiosis - diagnostic imaging Leukoaraiosis - pathology Magnetic Resonance Imaging Male Medical imaging Medicine Medicine & Public Health Neural networks Neural Networks, Computer Neurology Neuroradiology Neurosciences Neurosurgery Radiology Severity of Illness Index Software Substantia alba Tomography Tomography, X-Ray Computed |
title | Evaluating severity of white matter lesions from computed tomography images with convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20severity%20of%20white%20matter%20lesions%20from%20computed%20tomography%20images%20with%20convolutional%20neural%20network&rft.jtitle=Neuroradiology&rft.au=Pitk%C3%A4nen,%20Johanna&rft.date=2020-10-01&rft.volume=62&rft.issue=10&rft.spage=1257&rft.epage=1263&rft.pages=1257-1263&rft.issn=0028-3940&rft.eissn=1432-1920&rft_id=info:doi/10.1007/s00234-020-02410-2&rft_dat=%3Cproquest_swepu%3E2389211394%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440761706&rft_id=info:pmid/32281028&rfr_iscdi=true |