eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled

The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-06, Vol.295 (26), p.8759-8774
Hauptverfasser: Wesslowski, Janine, Kozielewicz, Pawel, Wang, Xianxian, Cui, Haijun, Schihada, Hannes, Kranz, Dominique, Karuna M, Pradhipa, Levkin, Pavel, Gross, Julia Christina, Boutros, Michael, Schulte, Gunnar, Davidson, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8774
container_issue 26
container_start_page 8759
container_title The Journal of biological chemistry
container_volume 295
creator Wesslowski, Janine
Kozielewicz, Pawel
Wang, Xianxian
Cui, Haijun
Schihada, Hannes
Kranz, Dominique
Karuna M, Pradhipa
Levkin, Pavel
Gross, Julia Christina
Boutros, Michael
Schulte, Gunnar
Davidson, Gary
description The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1–10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/β-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.
doi_str_mv 10.1074/jbc.RA120.012892
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_471464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817493719</els_id><sourcerecordid>2400537462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-509ebe9ba29b74c58c6301a94e55611088196c6b45b41b58ccfe3945135ed723</originalsourceid><addsrcrecordid>eNp1UUtPFTEUboxGLsjelenSzVz7nIcLE0K8YEKiMSSya9rOmaHQ28G2FwP_gf9Mr3MhsrCLPs73aHs-hN5TsqSkEZ-ujF3-PKKMLAllbcdeoQUlLa-4pBev0YIQRquOyXYP7ad0RcoQHX2L9jjjLZWkWaAHOFn9qLIeR-jxr5ArrjEEbTwkPGyCzW4K2mNdprvkEp6GLQvnqIfB2WsXxoL1OLmxMJ5OpQzZWaxTgpTWUAQ7nXGh37LyVNy9rzyEMV_iVXT39x76d-jNoH2Cw916gM5XX8-PT6uz7yffjo_OKislzZUkHRjojGadaYSVra05oboTIGVNSwda2tW2NkIaQU2B7QC8E5JyCX3D-AGqZtv0B242Rt1Et9bxTk3aqV3puuxAiYaKWhT-l5lfkDX0tnwoav9C9hIJ7lKN061qOBOSyWLwcWcQp98bSFmtXbLgvQ4wbZJighDJG1Fv30Zmqo1TShGG52soUdvQVQld_Q1dzaEXyYd_n_cseEq5ED7PBCg9vXUQVbIOgoXeRbBZ9ZP7v_sjYQu_CQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400537462</pqid></control><display><type>article</type><title>eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Wesslowski, Janine ; Kozielewicz, Pawel ; Wang, Xianxian ; Cui, Haijun ; Schihada, Hannes ; Kranz, Dominique ; Karuna M, Pradhipa ; Levkin, Pavel ; Gross, Julia Christina ; Boutros, Michael ; Schulte, Gunnar ; Davidson, Gary</creator><creatorcontrib>Wesslowski, Janine ; Kozielewicz, Pawel ; Wang, Xianxian ; Cui, Haijun ; Schihada, Hannes ; Kranz, Dominique ; Karuna M, Pradhipa ; Levkin, Pavel ; Gross, Julia Christina ; Boutros, Michael ; Schulte, Gunnar ; Davidson, Gary</creatorcontrib><description>The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1–10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/β-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.012892</identifier><identifier>PMID: 32381507</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; bioluminescence resonance energy transfer (BRET) ; Cell Biology ; Frizzled ; Frizzled Receptors - analysis ; Frizzled Receptors - metabolism ; fusion protein ; G protein–coupled receptor (GPCR) ; Green Fluorescent Proteins - analysis ; Green Fluorescent Proteins - metabolism ; HEK293 Cells ; Humans ; ligand binding ; membrane protein ; Mice ; Microscopy, Confocal - methods ; NanoBiT ; NanoBRET ; Protein Interaction Maps ; Protein Transport ; trafficking ; Wnt signaling ; Wnt Signaling Pathway ; Wnt3A Protein - analysis ; Wnt3A Protein - metabolism ; Xenopus</subject><ispartof>The Journal of biological chemistry, 2020-06, Vol.295 (26), p.8759-8774</ispartof><rights>2020 © 2020 Wesslowski et al.</rights><rights>2020 Wesslowski et al.</rights><rights>2020 Wesslowski et al. 2020 Wesslowski et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-509ebe9ba29b74c58c6301a94e55611088196c6b45b41b58ccfe3945135ed723</citedby><cites>FETCH-LOGICAL-c551t-509ebe9ba29b74c58c6301a94e55611088196c6b45b41b58ccfe3945135ed723</cites><orcidid>0000-0002-1889-1636 ; 0000-0002-2700-7013 ; 0000-0002-8939-5664 ; 0000-0003-1414-3566 ; 0000-0002-7934-7407 ; 0000-0002-9458-817X ; 0000-0002-2264-5518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324525/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324525/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32381507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:144151643$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wesslowski, Janine</creatorcontrib><creatorcontrib>Kozielewicz, Pawel</creatorcontrib><creatorcontrib>Wang, Xianxian</creatorcontrib><creatorcontrib>Cui, Haijun</creatorcontrib><creatorcontrib>Schihada, Hannes</creatorcontrib><creatorcontrib>Kranz, Dominique</creatorcontrib><creatorcontrib>Karuna M, Pradhipa</creatorcontrib><creatorcontrib>Levkin, Pavel</creatorcontrib><creatorcontrib>Gross, Julia Christina</creatorcontrib><creatorcontrib>Boutros, Michael</creatorcontrib><creatorcontrib>Schulte, Gunnar</creatorcontrib><creatorcontrib>Davidson, Gary</creatorcontrib><title>eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1–10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/β-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.</description><subject>Animals</subject><subject>bioluminescence resonance energy transfer (BRET)</subject><subject>Cell Biology</subject><subject>Frizzled</subject><subject>Frizzled Receptors - analysis</subject><subject>Frizzled Receptors - metabolism</subject><subject>fusion protein</subject><subject>G protein–coupled receptor (GPCR)</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>ligand binding</subject><subject>membrane protein</subject><subject>Mice</subject><subject>Microscopy, Confocal - methods</subject><subject>NanoBiT</subject><subject>NanoBRET</subject><subject>Protein Interaction Maps</subject><subject>Protein Transport</subject><subject>trafficking</subject><subject>Wnt signaling</subject><subject>Wnt Signaling Pathway</subject><subject>Wnt3A Protein - analysis</subject><subject>Wnt3A Protein - metabolism</subject><subject>Xenopus</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1UUtPFTEUboxGLsjelenSzVz7nIcLE0K8YEKiMSSya9rOmaHQ28G2FwP_gf9Mr3MhsrCLPs73aHs-hN5TsqSkEZ-ujF3-PKKMLAllbcdeoQUlLa-4pBev0YIQRquOyXYP7ad0RcoQHX2L9jjjLZWkWaAHOFn9qLIeR-jxr5ArrjEEbTwkPGyCzW4K2mNdprvkEp6GLQvnqIfB2WsXxoL1OLmxMJ5OpQzZWaxTgpTWUAQ7nXGh37LyVNy9rzyEMV_iVXT39x76d-jNoH2Cw916gM5XX8-PT6uz7yffjo_OKislzZUkHRjojGadaYSVra05oboTIGVNSwda2tW2NkIaQU2B7QC8E5JyCX3D-AGqZtv0B242Rt1Et9bxTk3aqV3puuxAiYaKWhT-l5lfkDX0tnwoav9C9hIJ7lKN061qOBOSyWLwcWcQp98bSFmtXbLgvQ4wbZJighDJG1Fv30Zmqo1TShGG52soUdvQVQld_Q1dzaEXyYd_n_cseEq5ED7PBCg9vXUQVbIOgoXeRbBZ9ZP7v_sjYQu_CQ</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Wesslowski, Janine</creator><creator>Kozielewicz, Pawel</creator><creator>Wang, Xianxian</creator><creator>Cui, Haijun</creator><creator>Schihada, Hannes</creator><creator>Kranz, Dominique</creator><creator>Karuna M, Pradhipa</creator><creator>Levkin, Pavel</creator><creator>Gross, Julia Christina</creator><creator>Boutros, Michael</creator><creator>Schulte, Gunnar</creator><creator>Davidson, Gary</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1889-1636</orcidid><orcidid>https://orcid.org/0000-0002-2700-7013</orcidid><orcidid>https://orcid.org/0000-0002-8939-5664</orcidid><orcidid>https://orcid.org/0000-0003-1414-3566</orcidid><orcidid>https://orcid.org/0000-0002-7934-7407</orcidid><orcidid>https://orcid.org/0000-0002-9458-817X</orcidid><orcidid>https://orcid.org/0000-0002-2264-5518</orcidid></search><sort><creationdate>20200626</creationdate><title>eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled</title><author>Wesslowski, Janine ; Kozielewicz, Pawel ; Wang, Xianxian ; Cui, Haijun ; Schihada, Hannes ; Kranz, Dominique ; Karuna M, Pradhipa ; Levkin, Pavel ; Gross, Julia Christina ; Boutros, Michael ; Schulte, Gunnar ; Davidson, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-509ebe9ba29b74c58c6301a94e55611088196c6b45b41b58ccfe3945135ed723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>bioluminescence resonance energy transfer (BRET)</topic><topic>Cell Biology</topic><topic>Frizzled</topic><topic>Frizzled Receptors - analysis</topic><topic>Frizzled Receptors - metabolism</topic><topic>fusion protein</topic><topic>G protein–coupled receptor (GPCR)</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>ligand binding</topic><topic>membrane protein</topic><topic>Mice</topic><topic>Microscopy, Confocal - methods</topic><topic>NanoBiT</topic><topic>NanoBRET</topic><topic>Protein Interaction Maps</topic><topic>Protein Transport</topic><topic>trafficking</topic><topic>Wnt signaling</topic><topic>Wnt Signaling Pathway</topic><topic>Wnt3A Protein - analysis</topic><topic>Wnt3A Protein - metabolism</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wesslowski, Janine</creatorcontrib><creatorcontrib>Kozielewicz, Pawel</creatorcontrib><creatorcontrib>Wang, Xianxian</creatorcontrib><creatorcontrib>Cui, Haijun</creatorcontrib><creatorcontrib>Schihada, Hannes</creatorcontrib><creatorcontrib>Kranz, Dominique</creatorcontrib><creatorcontrib>Karuna M, Pradhipa</creatorcontrib><creatorcontrib>Levkin, Pavel</creatorcontrib><creatorcontrib>Gross, Julia Christina</creatorcontrib><creatorcontrib>Boutros, Michael</creatorcontrib><creatorcontrib>Schulte, Gunnar</creatorcontrib><creatorcontrib>Davidson, Gary</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wesslowski, Janine</au><au>Kozielewicz, Pawel</au><au>Wang, Xianxian</au><au>Cui, Haijun</au><au>Schihada, Hannes</au><au>Kranz, Dominique</au><au>Karuna M, Pradhipa</au><au>Levkin, Pavel</au><au>Gross, Julia Christina</au><au>Boutros, Michael</au><au>Schulte, Gunnar</au><au>Davidson, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-06-26</date><risdate>2020</risdate><volume>295</volume><issue>26</issue><spage>8759</spage><epage>8774</epage><pages>8759-8774</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1–10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/β-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32381507</pmid><doi>10.1074/jbc.RA120.012892</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1889-1636</orcidid><orcidid>https://orcid.org/0000-0002-2700-7013</orcidid><orcidid>https://orcid.org/0000-0002-8939-5664</orcidid><orcidid>https://orcid.org/0000-0003-1414-3566</orcidid><orcidid>https://orcid.org/0000-0002-7934-7407</orcidid><orcidid>https://orcid.org/0000-0002-9458-817X</orcidid><orcidid>https://orcid.org/0000-0002-2264-5518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-06, Vol.295 (26), p.8759-8774
issn 0021-9258
1083-351X
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_471464
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online
subjects Animals
bioluminescence resonance energy transfer (BRET)
Cell Biology
Frizzled
Frizzled Receptors - analysis
Frizzled Receptors - metabolism
fusion protein
G protein–coupled receptor (GPCR)
Green Fluorescent Proteins - analysis
Green Fluorescent Proteins - metabolism
HEK293 Cells
Humans
ligand binding
membrane protein
Mice
Microscopy, Confocal - methods
NanoBiT
NanoBRET
Protein Interaction Maps
Protein Transport
trafficking
Wnt signaling
Wnt Signaling Pathway
Wnt3A Protein - analysis
Wnt3A Protein - metabolism
Xenopus
title eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=eGFP-tagged%20Wnt-3a%20enables%20functional%20analysis%20of%20Wnt%20trafficking%20and%20signaling%20and%20kinetic%20assessment%20of%20Wnt%20binding%20to%20full-length%20Frizzled&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wesslowski,%20Janine&rft.date=2020-06-26&rft.volume=295&rft.issue=26&rft.spage=8759&rft.epage=8774&rft.pages=8759-8774&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.012892&rft_dat=%3Cproquest_swepu%3E2400537462%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400537462&rft_id=info:pmid/32381507&rft_els_id=S0021925817493719&rfr_iscdi=true