Molecular design of hypothalamus development
A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates 1 , 2 . Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along tempora...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-06, Vol.582 (7811), p.246-252 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 7811 |
container_start_page | 246 |
container_title | Nature (London) |
container_volume | 582 |
creator | Romanov, Roman A. Tretiakov, Evgenii O. Kastriti, Maria Eleni Zupancic, Maja Häring, Martin Korchynska, Solomiia Popadin, Konstantin Benevento, Marco Rebernik, Patrick Lallemend, Francois Nishimori, Katsuhiko Clotman, Frédéric Andrews, William D. Parnavelas, John G. Farlik, Matthias Bock, Christoph Adameyko, Igor Hökfelt, Tomas Keimpema, Erik Harkany, Tibor |
description | A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates
1
,
2
. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development
3
. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells
4
. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning
5
in the hypothalamus. In particular, loss of SLIT–ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.
Single-cell RNA sequencing reveals molecular determinants of the developmental programs that orchestrate the intermingling of neuronal subtypes in the hypothalamus. |
doi_str_mv | 10.1038/s41586-020-2266-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_470744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626340957</galeid><sourcerecordid>A626340957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c711t-8f34afcf9701a2b4f70eaa5b9b710649ca3dbbdb503a725b227290991abd51b63</originalsourceid><addsrcrecordid>eNp1kttu1DAQhi0EokvhAbhBK7gBiRSfYsc3laqKQ6UiJA7Xlu1MsilJvI2TQt-eWe3SbdAiX9ia-eYfe_wT8pzRE0ZF8S5Jlhcqo5xmnCs8PCALJrXKpCr0Q7KglBcZLYQ6Ik9SuqKU5kzLx-RIcGmMksWCvP0cWwhT64ZlCamp-2WslqvbdRxXrnXdlDB8A21cd9CPT8mjyrUJnu32Y_Ljw_vv55-yyy8fL87PLrOgGRuzohLSVaEymjLHvaw0Bedyb7xmVEkTnCi9L31OhdM895xrbqgxzPkyZ16JY5JtddMvWE_eroemc8Otja6xu9BPPIGVmmopkT_d8pjpoAx41cG1s7J5pm9Wto43FvtyLQQKvN4JDPF6gjTarkkB2tb1EKdkucR555wzg-irf9CrOA09jmND4ZOYkMWeql0LtumriH3DRtSeKa6EpCbX-3fOqBp6wEvGHqoGwzP-5QE-rJtrex86OQDhKqFrwkHVN7MCZEb4PdZuSslefPs6Z9mWDUNMaYDqbsiM2o0n7daTFj1pN560FGte3P-du4q_JkSA774bU30Nw36k_1f9AwX36IU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415031348</pqid></control><display><type>article</type><title>Molecular design of hypothalamus development</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><source>SWEPUB Freely available online</source><creator>Romanov, Roman A. ; Tretiakov, Evgenii O. ; Kastriti, Maria Eleni ; Zupancic, Maja ; Häring, Martin ; Korchynska, Solomiia ; Popadin, Konstantin ; Benevento, Marco ; Rebernik, Patrick ; Lallemend, Francois ; Nishimori, Katsuhiko ; Clotman, Frédéric ; Andrews, William D. ; Parnavelas, John G. ; Farlik, Matthias ; Bock, Christoph ; Adameyko, Igor ; Hökfelt, Tomas ; Keimpema, Erik ; Harkany, Tibor</creator><creatorcontrib>Romanov, Roman A. ; Tretiakov, Evgenii O. ; Kastriti, Maria Eleni ; Zupancic, Maja ; Häring, Martin ; Korchynska, Solomiia ; Popadin, Konstantin ; Benevento, Marco ; Rebernik, Patrick ; Lallemend, Francois ; Nishimori, Katsuhiko ; Clotman, Frédéric ; Andrews, William D. ; Parnavelas, John G. ; Farlik, Matthias ; Bock, Christoph ; Adameyko, Igor ; Hökfelt, Tomas ; Keimpema, Erik ; Harkany, Tibor</creatorcontrib><description>A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates
1
,
2
. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development
3
. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells
4
. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning
5
in the hypothalamus. In particular, loss of SLIT–ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.
Single-cell RNA sequencing reveals molecular determinants of the developmental programs that orchestrate the intermingling of neuronal subtypes in the hypothalamus.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2266-0</identifier><identifier>PMID: 32499648</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/19 ; 38/43 ; 38/91 ; 42/109 ; 631/378/2571/1696 ; 631/378/2571/2573 ; 64/60 ; 82/1 ; Animals ; Brain ; Cell Differentiation ; Cell Lineage ; Combinatorial analysis ; Dopamine ; Dopamine - metabolism ; Dopaminergic Neurons - cytology ; Dopaminergic Neurons - metabolism ; Ectoderm - cytology ; Ectoderm - metabolism ; Female ; GABAergic Neurons - cytology ; GABAergic Neurons - metabolism ; gamma-Aminobutyric Acid - metabolism ; Gene expression ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Gene sequencing ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Gestation ; Glutamic Acid - metabolism ; Heterogeneity ; Humanities and Social Sciences ; Hypothalamus ; Hypothalamus - cytology ; Hypothalamus - embryology ; Hypothalamus - metabolism ; Male ; Mice ; Morphogenesis ; Morphogenesis - genetics ; multidisciplinary ; Nerve Tissue Proteins - metabolism ; Neural stem cells ; Neurogenesis ; Neuroglia - cytology ; Neuroglia - metabolism ; Neuronal-glial interactions ; Neurons ; Neuropeptides ; Neuropeptides - metabolism ; Neurotransmitter Agents - metabolism ; Neurotransmitters ; Phenotyping ; Physiological aspects ; Receptors, Immunologic - metabolism ; Regulon - genetics ; Ribonucleic acid ; RNA ; Robo protein ; Roundabout Proteins ; Science ; Science (multidisciplinary) ; Signal Transduction ; Slit protein ; Transcription factors ; Transcription Factors - metabolism ; γ-Aminobutyric acid</subject><ispartof>Nature (London), 2020-06, Vol.582 (7811), p.246-252</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 11, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c711t-8f34afcf9701a2b4f70eaa5b9b710649ca3dbbdb503a725b227290991abd51b63</citedby><cites>FETCH-LOGICAL-c711t-8f34afcf9701a2b4f70eaa5b9b710649ca3dbbdb503a725b227290991abd51b63</cites><orcidid>0000-0002-7555-6762 ; 0000-0001-6091-3088 ; 0000-0001-5920-2190 ; 0000-0002-3937-518X ; 0000-0002-0497-2195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2266-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2266-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32499648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145973528$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Romanov, Roman A.</creatorcontrib><creatorcontrib>Tretiakov, Evgenii O.</creatorcontrib><creatorcontrib>Kastriti, Maria Eleni</creatorcontrib><creatorcontrib>Zupancic, Maja</creatorcontrib><creatorcontrib>Häring, Martin</creatorcontrib><creatorcontrib>Korchynska, Solomiia</creatorcontrib><creatorcontrib>Popadin, Konstantin</creatorcontrib><creatorcontrib>Benevento, Marco</creatorcontrib><creatorcontrib>Rebernik, Patrick</creatorcontrib><creatorcontrib>Lallemend, Francois</creatorcontrib><creatorcontrib>Nishimori, Katsuhiko</creatorcontrib><creatorcontrib>Clotman, Frédéric</creatorcontrib><creatorcontrib>Andrews, William D.</creatorcontrib><creatorcontrib>Parnavelas, John G.</creatorcontrib><creatorcontrib>Farlik, Matthias</creatorcontrib><creatorcontrib>Bock, Christoph</creatorcontrib><creatorcontrib>Adameyko, Igor</creatorcontrib><creatorcontrib>Hökfelt, Tomas</creatorcontrib><creatorcontrib>Keimpema, Erik</creatorcontrib><creatorcontrib>Harkany, Tibor</creatorcontrib><title>Molecular design of hypothalamus development</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates
1
,
2
. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development
3
. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells
4
. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning
5
in the hypothalamus. In particular, loss of SLIT–ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.
Single-cell RNA sequencing reveals molecular determinants of the developmental programs that orchestrate the intermingling of neuronal subtypes in the hypothalamus.</description><subject>13/51</subject><subject>14/19</subject><subject>38/43</subject><subject>38/91</subject><subject>42/109</subject><subject>631/378/2571/1696</subject><subject>631/378/2571/2573</subject><subject>64/60</subject><subject>82/1</subject><subject>Animals</subject><subject>Brain</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Combinatorial analysis</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopaminergic Neurons - cytology</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Ectoderm - cytology</subject><subject>Ectoderm - metabolism</subject><subject>Female</subject><subject>GABAergic Neurons - cytology</subject><subject>GABAergic Neurons - metabolism</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Gene sequencing</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Gestation</subject><subject>Glutamic Acid - metabolism</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Hypothalamus</subject><subject>Hypothalamus - cytology</subject><subject>Hypothalamus - embryology</subject><subject>Hypothalamus - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Morphogenesis</subject><subject>Morphogenesis - genetics</subject><subject>multidisciplinary</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural stem cells</subject><subject>Neurogenesis</subject><subject>Neuroglia - cytology</subject><subject>Neuroglia - metabolism</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Neuropeptides</subject><subject>Neuropeptides - metabolism</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitters</subject><subject>Phenotyping</subject><subject>Physiological aspects</subject><subject>Receptors, Immunologic - metabolism</subject><subject>Regulon - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Robo protein</subject><subject>Roundabout Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Slit protein</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>γ-Aminobutyric acid</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNp1kttu1DAQhi0EokvhAbhBK7gBiRSfYsc3laqKQ6UiJA7Xlu1MsilJvI2TQt-eWe3SbdAiX9ia-eYfe_wT8pzRE0ZF8S5Jlhcqo5xmnCs8PCALJrXKpCr0Q7KglBcZLYQ6Ik9SuqKU5kzLx-RIcGmMksWCvP0cWwhT64ZlCamp-2WslqvbdRxXrnXdlDB8A21cd9CPT8mjyrUJnu32Y_Ljw_vv55-yyy8fL87PLrOgGRuzohLSVaEymjLHvaw0Bedyb7xmVEkTnCi9L31OhdM895xrbqgxzPkyZ16JY5JtddMvWE_eroemc8Otja6xu9BPPIGVmmopkT_d8pjpoAx41cG1s7J5pm9Wto43FvtyLQQKvN4JDPF6gjTarkkB2tb1EKdkucR555wzg-irf9CrOA09jmND4ZOYkMWeql0LtumriH3DRtSeKa6EpCbX-3fOqBp6wEvGHqoGwzP-5QE-rJtrex86OQDhKqFrwkHVN7MCZEb4PdZuSslefPs6Z9mWDUNMaYDqbsiM2o0n7daTFj1pN560FGte3P-du4q_JkSA774bU30Nw36k_1f9AwX36IU</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Romanov, Roman A.</creator><creator>Tretiakov, Evgenii O.</creator><creator>Kastriti, Maria Eleni</creator><creator>Zupancic, Maja</creator><creator>Häring, Martin</creator><creator>Korchynska, Solomiia</creator><creator>Popadin, Konstantin</creator><creator>Benevento, Marco</creator><creator>Rebernik, Patrick</creator><creator>Lallemend, Francois</creator><creator>Nishimori, Katsuhiko</creator><creator>Clotman, Frédéric</creator><creator>Andrews, William D.</creator><creator>Parnavelas, John G.</creator><creator>Farlik, Matthias</creator><creator>Bock, Christoph</creator><creator>Adameyko, Igor</creator><creator>Hökfelt, Tomas</creator><creator>Keimpema, Erik</creator><creator>Harkany, Tibor</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-7555-6762</orcidid><orcidid>https://orcid.org/0000-0001-6091-3088</orcidid><orcidid>https://orcid.org/0000-0001-5920-2190</orcidid><orcidid>https://orcid.org/0000-0002-3937-518X</orcidid><orcidid>https://orcid.org/0000-0002-0497-2195</orcidid></search><sort><creationdate>202006</creationdate><title>Molecular design of hypothalamus development</title><author>Romanov, Roman A. ; Tretiakov, Evgenii O. ; Kastriti, Maria Eleni ; Zupancic, Maja ; Häring, Martin ; Korchynska, Solomiia ; Popadin, Konstantin ; Benevento, Marco ; Rebernik, Patrick ; Lallemend, Francois ; Nishimori, Katsuhiko ; Clotman, Frédéric ; Andrews, William D. ; Parnavelas, John G. ; Farlik, Matthias ; Bock, Christoph ; Adameyko, Igor ; Hökfelt, Tomas ; Keimpema, Erik ; Harkany, Tibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c711t-8f34afcf9701a2b4f70eaa5b9b710649ca3dbbdb503a725b227290991abd51b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/51</topic><topic>14/19</topic><topic>38/43</topic><topic>38/91</topic><topic>42/109</topic><topic>631/378/2571/1696</topic><topic>631/378/2571/2573</topic><topic>64/60</topic><topic>82/1</topic><topic>Animals</topic><topic>Brain</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Combinatorial analysis</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopaminergic Neurons - cytology</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Ectoderm - cytology</topic><topic>Ectoderm - metabolism</topic><topic>Female</topic><topic>GABAergic Neurons - cytology</topic><topic>GABAergic Neurons - metabolism</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Gene sequencing</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Gestation</topic><topic>Glutamic Acid - metabolism</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Hypothalamus</topic><topic>Hypothalamus - cytology</topic><topic>Hypothalamus - embryology</topic><topic>Hypothalamus - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Morphogenesis</topic><topic>Morphogenesis - genetics</topic><topic>multidisciplinary</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural stem cells</topic><topic>Neurogenesis</topic><topic>Neuroglia - cytology</topic><topic>Neuroglia - metabolism</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Neuropeptides</topic><topic>Neuropeptides - metabolism</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitters</topic><topic>Phenotyping</topic><topic>Physiological aspects</topic><topic>Receptors, Immunologic - metabolism</topic><topic>Regulon - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Robo protein</topic><topic>Roundabout Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Slit protein</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanov, Roman A.</creatorcontrib><creatorcontrib>Tretiakov, Evgenii O.</creatorcontrib><creatorcontrib>Kastriti, Maria Eleni</creatorcontrib><creatorcontrib>Zupancic, Maja</creatorcontrib><creatorcontrib>Häring, Martin</creatorcontrib><creatorcontrib>Korchynska, Solomiia</creatorcontrib><creatorcontrib>Popadin, Konstantin</creatorcontrib><creatorcontrib>Benevento, Marco</creatorcontrib><creatorcontrib>Rebernik, Patrick</creatorcontrib><creatorcontrib>Lallemend, Francois</creatorcontrib><creatorcontrib>Nishimori, Katsuhiko</creatorcontrib><creatorcontrib>Clotman, Frédéric</creatorcontrib><creatorcontrib>Andrews, William D.</creatorcontrib><creatorcontrib>Parnavelas, John G.</creatorcontrib><creatorcontrib>Farlik, Matthias</creatorcontrib><creatorcontrib>Bock, Christoph</creatorcontrib><creatorcontrib>Adameyko, Igor</creatorcontrib><creatorcontrib>Hökfelt, Tomas</creatorcontrib><creatorcontrib>Keimpema, Erik</creatorcontrib><creatorcontrib>Harkany, Tibor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanov, Roman A.</au><au>Tretiakov, Evgenii O.</au><au>Kastriti, Maria Eleni</au><au>Zupancic, Maja</au><au>Häring, Martin</au><au>Korchynska, Solomiia</au><au>Popadin, Konstantin</au><au>Benevento, Marco</au><au>Rebernik, Patrick</au><au>Lallemend, Francois</au><au>Nishimori, Katsuhiko</au><au>Clotman, Frédéric</au><au>Andrews, William D.</au><au>Parnavelas, John G.</au><au>Farlik, Matthias</au><au>Bock, Christoph</au><au>Adameyko, Igor</au><au>Hökfelt, Tomas</au><au>Keimpema, Erik</au><au>Harkany, Tibor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular design of hypothalamus development</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-06</date><risdate>2020</risdate><volume>582</volume><issue>7811</issue><spage>246</spage><epage>252</epage><pages>246-252</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates
1
,
2
. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development
3
. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells
4
. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning
5
in the hypothalamus. In particular, loss of SLIT–ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.
Single-cell RNA sequencing reveals molecular determinants of the developmental programs that orchestrate the intermingling of neuronal subtypes in the hypothalamus.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32499648</pmid><doi>10.1038/s41586-020-2266-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7555-6762</orcidid><orcidid>https://orcid.org/0000-0001-6091-3088</orcidid><orcidid>https://orcid.org/0000-0001-5920-2190</orcidid><orcidid>https://orcid.org/0000-0002-3937-518X</orcidid><orcidid>https://orcid.org/0000-0002-0497-2195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-06, Vol.582 (7811), p.246-252 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_470744 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online; SWEPUB Freely available online |
subjects | 13/51 14/19 38/43 38/91 42/109 631/378/2571/1696 631/378/2571/2573 64/60 82/1 Animals Brain Cell Differentiation Cell Lineage Combinatorial analysis Dopamine Dopamine - metabolism Dopaminergic Neurons - cytology Dopaminergic Neurons - metabolism Ectoderm - cytology Ectoderm - metabolism Female GABAergic Neurons - cytology GABAergic Neurons - metabolism gamma-Aminobutyric Acid - metabolism Gene expression Gene Expression Regulation, Developmental Gene Regulatory Networks Gene sequencing Genome-wide association studies Genome-Wide Association Study Genomes Gestation Glutamic Acid - metabolism Heterogeneity Humanities and Social Sciences Hypothalamus Hypothalamus - cytology Hypothalamus - embryology Hypothalamus - metabolism Male Mice Morphogenesis Morphogenesis - genetics multidisciplinary Nerve Tissue Proteins - metabolism Neural stem cells Neurogenesis Neuroglia - cytology Neuroglia - metabolism Neuronal-glial interactions Neurons Neuropeptides Neuropeptides - metabolism Neurotransmitter Agents - metabolism Neurotransmitters Phenotyping Physiological aspects Receptors, Immunologic - metabolism Regulon - genetics Ribonucleic acid RNA Robo protein Roundabout Proteins Science Science (multidisciplinary) Signal Transduction Slit protein Transcription factors Transcription Factors - metabolism γ-Aminobutyric acid |
title | Molecular design of hypothalamus development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20design%20of%20hypothalamus%20development&rft.jtitle=Nature%20(London)&rft.au=Romanov,%20Roman%20A.&rft.date=2020-06&rft.volume=582&rft.issue=7811&rft.spage=246&rft.epage=252&rft.pages=246-252&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2266-0&rft_dat=%3Cgale_swepu%3EA626340957%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415031348&rft_id=info:pmid/32499648&rft_galeid=A626340957&rfr_iscdi=true |