Use of proteomics to identify biomarkers associated with chronic kidney disease and long‐term outcomes in patients with myocardial infarction

Background Patients with chronic kidney disease (CKD) have poor outcomes following myocardial infarction (MI). We performed an untargeted examination of 175 biomarkers to identify those with the strongest association with CKD and to examine the association of those biomarkers with long‐term outcomes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of internal medicine 2020-11, Vol.288 (5), p.581-592
Hauptverfasser: Edfors, R., Lindhagen, L., Spaak, J., Evans, M., Andell, P., Baron, T., Mörtberg, J., Rezeli, M., Salzinger, B., Lundman, P., Szummer, K., Tornvall, P., Wallén, H. N., Jacobson, S. H., Kahan, T., Marko‐Varga, G., Erlinge, D., James, S., Lindahl, B., Jernberg, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 592
container_issue 5
container_start_page 581
container_title Journal of internal medicine
container_volume 288
creator Edfors, R.
Lindhagen, L.
Spaak, J.
Evans, M.
Andell, P.
Baron, T.
Mörtberg, J.
Rezeli, M.
Salzinger, B.
Lundman, P.
Szummer, K.
Tornvall, P.
Wallén, H. N.
Jacobson, S. H.
Kahan, T.
Marko‐Varga, G.
Erlinge, D.
James, S.
Lindahl, B.
Jernberg, T.
description Background Patients with chronic kidney disease (CKD) have poor outcomes following myocardial infarction (MI). We performed an untargeted examination of 175 biomarkers to identify those with the strongest association with CKD and to examine the association of those biomarkers with long‐term outcomes. Methods A total of 175 different biomarkers from MI patients enrolled in the Swedish Web‐System for Enhancement and Development of Evidence‐Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART) registry were analysed either by a multiple reaction monitoring mass spectrometry assay or by a multiplex assay (proximity extension assay). Random forests statistical models were used to assess the predictor importance of biomarkers, CKD and outcomes. Results A total of 1098 MI patients with a median estimated glomerular filtration rate of 85 mL min−1/1.73 m2 were followed for a median of 3.2 years. The random forests analyses, without and with adjustment for differences in demography, comorbidities and severity of disease, identified six biomarkers (adrenomedullin, TNF receptor‐1, adipocyte fatty acid‐binding protein‐4, TNF‐related apoptosis‐inducing ligand receptor 2, growth differentiation factor‐15 and TNF receptor‐2) to be strongly associated with CKD. All six biomarkers were also amongst the 15 strongest predictors for death, and four of them were amongst the strongest predictors of subsequent MI and heart failure hospitalization. Conclusion In patients with MI, a proteomic approach could identify six biomarkers that best predicted CKD. These biomarkers were also amongst the most important predictors of long‐term outcomes. Thus, these biomarkers indicate underlying mechanisms that may contribute to the poor prognosis seen in patients with MI and CKD.
doi_str_mv 10.1111/joim.13116
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_469889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421459952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5876-fe86d946a00a6892ba5e64fcda7f5c1d5c91974f24430ff49dade6b7b44b25bb3</originalsourceid><addsrcrecordid>eNp9kstu1DAUQCMEoqWw4QOQJTYIkWI7thMvq_IqGtQNZWv5cdN6JokHO9FodvwBfCNfgqeZFglpsHRlyz73-HWL4jnBpyS3t8vg-1NSESIeFMekEryktRQPi2MsOStFQ_FR8SSlJcakwgI_Lo4qKqqGNfVx8fMqAQotWscwQui9TWgMyDsYRt9ukfGh13EFMSGdUrBej-DQxo83yN7EMHiLVt4NsEXOJ9DZpQeHujBc__7xa4TYozCNNvSQkB_QWo8-i9Ms6LfB6ui87vJaq6MdfRieFo9a3SV4tu9PiqsP77-efyoXlx8vzs8WpeVNLcoWGuEkExpjLRpJjeYgWGudrltuieNWElmzljJW4bZl0mkHwtSGMUO5MdVJUc7etIH1ZNQ6-nzRrQraq_3UKo9AMSGbRmZeHuTz27m_SXeJhDHJJa52uYuDud20zmFy3G7WOFvlmyhn6kYxUwtldI0V1ZgAZdJSh7PuzUHdO__tTIV4raZJMco4oxl_NeP5mN8nSKPqfbLQdXqAMCVFGSWMS8l36Mt_0GWY4pD_IVOc0qrObKZez5SNIaUI7f0JCFa7glS7glS3BZnhF3vlZHpw9-hdBWaAzMDGd7D9j0p9vrz4Mkv_AB2R8OA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452237421</pqid></control><display><type>article</type><title>Use of proteomics to identify biomarkers associated with chronic kidney disease and long‐term outcomes in patients with myocardial infarction</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Edfors, R. ; Lindhagen, L. ; Spaak, J. ; Evans, M. ; Andell, P. ; Baron, T. ; Mörtberg, J. ; Rezeli, M. ; Salzinger, B. ; Lundman, P. ; Szummer, K. ; Tornvall, P. ; Wallén, H. N. ; Jacobson, S. H. ; Kahan, T. ; Marko‐Varga, G. ; Erlinge, D. ; James, S. ; Lindahl, B. ; Jernberg, T.</creator><creatorcontrib>Edfors, R. ; Lindhagen, L. ; Spaak, J. ; Evans, M. ; Andell, P. ; Baron, T. ; Mörtberg, J. ; Rezeli, M. ; Salzinger, B. ; Lundman, P. ; Szummer, K. ; Tornvall, P. ; Wallén, H. N. ; Jacobson, S. H. ; Kahan, T. ; Marko‐Varga, G. ; Erlinge, D. ; James, S. ; Lindahl, B. ; Jernberg, T.</creatorcontrib><description>Background Patients with chronic kidney disease (CKD) have poor outcomes following myocardial infarction (MI). We performed an untargeted examination of 175 biomarkers to identify those with the strongest association with CKD and to examine the association of those biomarkers with long‐term outcomes. Methods A total of 175 different biomarkers from MI patients enrolled in the Swedish Web‐System for Enhancement and Development of Evidence‐Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART) registry were analysed either by a multiple reaction monitoring mass spectrometry assay or by a multiplex assay (proximity extension assay). Random forests statistical models were used to assess the predictor importance of biomarkers, CKD and outcomes. Results A total of 1098 MI patients with a median estimated glomerular filtration rate of 85 mL min−1/1.73 m2 were followed for a median of 3.2 years. The random forests analyses, without and with adjustment for differences in demography, comorbidities and severity of disease, identified six biomarkers (adrenomedullin, TNF receptor‐1, adipocyte fatty acid‐binding protein‐4, TNF‐related apoptosis‐inducing ligand receptor 2, growth differentiation factor‐15 and TNF receptor‐2) to be strongly associated with CKD. All six biomarkers were also amongst the 15 strongest predictors for death, and four of them were amongst the strongest predictors of subsequent MI and heart failure hospitalization. Conclusion In patients with MI, a proteomic approach could identify six biomarkers that best predicted CKD. These biomarkers were also amongst the most important predictors of long‐term outcomes. Thus, these biomarkers indicate underlying mechanisms that may contribute to the poor prognosis seen in patients with MI and CKD.</description><identifier>ISSN: 0954-6820</identifier><identifier>ISSN: 1365-2796</identifier><identifier>EISSN: 1365-2796</identifier><identifier>DOI: 10.1111/joim.13116</identifier><identifier>PMID: 32638487</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>acute coronary syndrome and myocardial infarction ; Adrenomedullin ; Adrenomedullin - blood ; Aged ; Apoptosis ; Assaying ; Biomarkers ; Biomarkers - blood ; Cardiac and Cardiovascular Systems ; Cardiovascular diseases ; chronic kidney disease ; Clinical Medicine ; Congestive heart failure ; Coronary artery disease ; Demography ; Fatty acids ; Female ; Glomerular filtration rate ; Growth Differentiation Factor 15 - blood ; Heart attacks ; Heart diseases ; Humans ; Kardiologi ; Kidney diseases ; Kidneys ; Klinisk medicin ; Male ; Mass spectrometry ; Mass spectroscopy ; Mathematical models ; Median (statistics) ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Middle Aged ; Myocardial infarction ; Myocardial Infarction - complications ; Perilipin-2 - blood ; Proteomics ; Receptors ; Receptors, TNF-Related Apoptosis-Inducing Ligand - blood ; Receptors, Tumor Necrosis Factor - blood ; renal dysfunction ; renal failure ; Renal Insufficiency, Chronic - complications ; Renal Insufficiency, Chronic - diagnosis ; Statistical analysis ; Statistical models ; Tumor necrosis factor receptors ; Urologi och njurmedicin ; Urology and Nephrology</subject><ispartof>Journal of internal medicine, 2020-11, Vol.288 (5), p.581-592</ispartof><rights>2020 The Association for the Publication of the Journal of Internal Medicine</rights><rights>2020 The Association for the Publication of the Journal of Internal Medicine.</rights><rights>Copyright © 2020 The Association for the Publication of the Journal of Internal Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5876-fe86d946a00a6892ba5e64fcda7f5c1d5c91974f24430ff49dade6b7b44b25bb3</citedby><cites>FETCH-LOGICAL-c5876-fe86d946a00a6892ba5e64fcda7f5c1d5c91974f24430ff49dade6b7b44b25bb3</cites><orcidid>0000-0003-2377-436X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjoim.13116$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjoim.13116$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32638487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424542$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/48dc35e6-db78-4b76-ba70-2a01e249c2d0$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:144959039$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Edfors, R.</creatorcontrib><creatorcontrib>Lindhagen, L.</creatorcontrib><creatorcontrib>Spaak, J.</creatorcontrib><creatorcontrib>Evans, M.</creatorcontrib><creatorcontrib>Andell, P.</creatorcontrib><creatorcontrib>Baron, T.</creatorcontrib><creatorcontrib>Mörtberg, J.</creatorcontrib><creatorcontrib>Rezeli, M.</creatorcontrib><creatorcontrib>Salzinger, B.</creatorcontrib><creatorcontrib>Lundman, P.</creatorcontrib><creatorcontrib>Szummer, K.</creatorcontrib><creatorcontrib>Tornvall, P.</creatorcontrib><creatorcontrib>Wallén, H. N.</creatorcontrib><creatorcontrib>Jacobson, S. H.</creatorcontrib><creatorcontrib>Kahan, T.</creatorcontrib><creatorcontrib>Marko‐Varga, G.</creatorcontrib><creatorcontrib>Erlinge, D.</creatorcontrib><creatorcontrib>James, S.</creatorcontrib><creatorcontrib>Lindahl, B.</creatorcontrib><creatorcontrib>Jernberg, T.</creatorcontrib><title>Use of proteomics to identify biomarkers associated with chronic kidney disease and long‐term outcomes in patients with myocardial infarction</title><title>Journal of internal medicine</title><addtitle>J Intern Med</addtitle><description>Background Patients with chronic kidney disease (CKD) have poor outcomes following myocardial infarction (MI). We performed an untargeted examination of 175 biomarkers to identify those with the strongest association with CKD and to examine the association of those biomarkers with long‐term outcomes. Methods A total of 175 different biomarkers from MI patients enrolled in the Swedish Web‐System for Enhancement and Development of Evidence‐Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART) registry were analysed either by a multiple reaction monitoring mass spectrometry assay or by a multiplex assay (proximity extension assay). Random forests statistical models were used to assess the predictor importance of biomarkers, CKD and outcomes. Results A total of 1098 MI patients with a median estimated glomerular filtration rate of 85 mL min−1/1.73 m2 were followed for a median of 3.2 years. The random forests analyses, without and with adjustment for differences in demography, comorbidities and severity of disease, identified six biomarkers (adrenomedullin, TNF receptor‐1, adipocyte fatty acid‐binding protein‐4, TNF‐related apoptosis‐inducing ligand receptor 2, growth differentiation factor‐15 and TNF receptor‐2) to be strongly associated with CKD. All six biomarkers were also amongst the 15 strongest predictors for death, and four of them were amongst the strongest predictors of subsequent MI and heart failure hospitalization. Conclusion In patients with MI, a proteomic approach could identify six biomarkers that best predicted CKD. These biomarkers were also amongst the most important predictors of long‐term outcomes. Thus, these biomarkers indicate underlying mechanisms that may contribute to the poor prognosis seen in patients with MI and CKD.</description><subject>acute coronary syndrome and myocardial infarction</subject><subject>Adrenomedullin</subject><subject>Adrenomedullin - blood</subject><subject>Aged</subject><subject>Apoptosis</subject><subject>Assaying</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Cardiac and Cardiovascular Systems</subject><subject>Cardiovascular diseases</subject><subject>chronic kidney disease</subject><subject>Clinical Medicine</subject><subject>Congestive heart failure</subject><subject>Coronary artery disease</subject><subject>Demography</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Glomerular filtration rate</subject><subject>Growth Differentiation Factor 15 - blood</subject><subject>Heart attacks</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Kardiologi</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Klinisk medicin</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematical models</subject><subject>Median (statistics)</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Middle Aged</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - complications</subject><subject>Perilipin-2 - blood</subject><subject>Proteomics</subject><subject>Receptors</subject><subject>Receptors, TNF-Related Apoptosis-Inducing Ligand - blood</subject><subject>Receptors, Tumor Necrosis Factor - blood</subject><subject>renal dysfunction</subject><subject>renal failure</subject><subject>Renal Insufficiency, Chronic - complications</subject><subject>Renal Insufficiency, Chronic - diagnosis</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Tumor necrosis factor receptors</subject><subject>Urologi och njurmedicin</subject><subject>Urology and Nephrology</subject><issn>0954-6820</issn><issn>1365-2796</issn><issn>1365-2796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kstu1DAUQCMEoqWw4QOQJTYIkWI7thMvq_IqGtQNZWv5cdN6JokHO9FodvwBfCNfgqeZFglpsHRlyz73-HWL4jnBpyS3t8vg-1NSESIeFMekEryktRQPi2MsOStFQ_FR8SSlJcakwgI_Lo4qKqqGNfVx8fMqAQotWscwQui9TWgMyDsYRt9ukfGh13EFMSGdUrBej-DQxo83yN7EMHiLVt4NsEXOJ9DZpQeHujBc__7xa4TYozCNNvSQkB_QWo8-i9Ms6LfB6ui87vJaq6MdfRieFo9a3SV4tu9PiqsP77-efyoXlx8vzs8WpeVNLcoWGuEkExpjLRpJjeYgWGudrltuieNWElmzljJW4bZl0mkHwtSGMUO5MdVJUc7etIH1ZNQ6-nzRrQraq_3UKo9AMSGbRmZeHuTz27m_SXeJhDHJJa52uYuDud20zmFy3G7WOFvlmyhn6kYxUwtldI0V1ZgAZdJSh7PuzUHdO__tTIV4raZJMco4oxl_NeP5mN8nSKPqfbLQdXqAMCVFGSWMS8l36Mt_0GWY4pD_IVOc0qrObKZez5SNIaUI7f0JCFa7glS7glS3BZnhF3vlZHpw9-hdBWaAzMDGd7D9j0p9vrz4Mkv_AB2R8OA</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Edfors, R.</creator><creator>Lindhagen, L.</creator><creator>Spaak, J.</creator><creator>Evans, M.</creator><creator>Andell, P.</creator><creator>Baron, T.</creator><creator>Mörtberg, J.</creator><creator>Rezeli, M.</creator><creator>Salzinger, B.</creator><creator>Lundman, P.</creator><creator>Szummer, K.</creator><creator>Tornvall, P.</creator><creator>Wallén, H. N.</creator><creator>Jacobson, S. H.</creator><creator>Kahan, T.</creator><creator>Marko‐Varga, G.</creator><creator>Erlinge, D.</creator><creator>James, S.</creator><creator>Lindahl, B.</creator><creator>Jernberg, T.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><scope>D95</scope><orcidid>https://orcid.org/0000-0003-2377-436X</orcidid></search><sort><creationdate>202011</creationdate><title>Use of proteomics to identify biomarkers associated with chronic kidney disease and long‐term outcomes in patients with myocardial infarction</title><author>Edfors, R. ; Lindhagen, L. ; Spaak, J. ; Evans, M. ; Andell, P. ; Baron, T. ; Mörtberg, J. ; Rezeli, M. ; Salzinger, B. ; Lundman, P. ; Szummer, K. ; Tornvall, P. ; Wallén, H. N. ; Jacobson, S. H. ; Kahan, T. ; Marko‐Varga, G. ; Erlinge, D. ; James, S. ; Lindahl, B. ; Jernberg, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5876-fe86d946a00a6892ba5e64fcda7f5c1d5c91974f24430ff49dade6b7b44b25bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acute coronary syndrome and myocardial infarction</topic><topic>Adrenomedullin</topic><topic>Adrenomedullin - blood</topic><topic>Aged</topic><topic>Apoptosis</topic><topic>Assaying</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Cardiac and Cardiovascular Systems</topic><topic>Cardiovascular diseases</topic><topic>chronic kidney disease</topic><topic>Clinical Medicine</topic><topic>Congestive heart failure</topic><topic>Coronary artery disease</topic><topic>Demography</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Glomerular filtration rate</topic><topic>Growth Differentiation Factor 15 - blood</topic><topic>Heart attacks</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Kardiologi</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Klinisk medicin</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematical models</topic><topic>Median (statistics)</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Middle Aged</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - complications</topic><topic>Perilipin-2 - blood</topic><topic>Proteomics</topic><topic>Receptors</topic><topic>Receptors, TNF-Related Apoptosis-Inducing Ligand - blood</topic><topic>Receptors, Tumor Necrosis Factor - blood</topic><topic>renal dysfunction</topic><topic>renal failure</topic><topic>Renal Insufficiency, Chronic - complications</topic><topic>Renal Insufficiency, Chronic - diagnosis</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Tumor necrosis factor receptors</topic><topic>Urologi och njurmedicin</topic><topic>Urology and Nephrology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edfors, R.</creatorcontrib><creatorcontrib>Lindhagen, L.</creatorcontrib><creatorcontrib>Spaak, J.</creatorcontrib><creatorcontrib>Evans, M.</creatorcontrib><creatorcontrib>Andell, P.</creatorcontrib><creatorcontrib>Baron, T.</creatorcontrib><creatorcontrib>Mörtberg, J.</creatorcontrib><creatorcontrib>Rezeli, M.</creatorcontrib><creatorcontrib>Salzinger, B.</creatorcontrib><creatorcontrib>Lundman, P.</creatorcontrib><creatorcontrib>Szummer, K.</creatorcontrib><creatorcontrib>Tornvall, P.</creatorcontrib><creatorcontrib>Wallén, H. N.</creatorcontrib><creatorcontrib>Jacobson, S. H.</creatorcontrib><creatorcontrib>Kahan, T.</creatorcontrib><creatorcontrib>Marko‐Varga, G.</creatorcontrib><creatorcontrib>Erlinge, D.</creatorcontrib><creatorcontrib>James, S.</creatorcontrib><creatorcontrib>Lindahl, B.</creatorcontrib><creatorcontrib>Jernberg, T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><collection>SWEPUB Lunds universitet</collection><jtitle>Journal of internal medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edfors, R.</au><au>Lindhagen, L.</au><au>Spaak, J.</au><au>Evans, M.</au><au>Andell, P.</au><au>Baron, T.</au><au>Mörtberg, J.</au><au>Rezeli, M.</au><au>Salzinger, B.</au><au>Lundman, P.</au><au>Szummer, K.</au><au>Tornvall, P.</au><au>Wallén, H. N.</au><au>Jacobson, S. H.</au><au>Kahan, T.</au><au>Marko‐Varga, G.</au><au>Erlinge, D.</au><au>James, S.</au><au>Lindahl, B.</au><au>Jernberg, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of proteomics to identify biomarkers associated with chronic kidney disease and long‐term outcomes in patients with myocardial infarction</atitle><jtitle>Journal of internal medicine</jtitle><addtitle>J Intern Med</addtitle><date>2020-11</date><risdate>2020</risdate><volume>288</volume><issue>5</issue><spage>581</spage><epage>592</epage><pages>581-592</pages><issn>0954-6820</issn><issn>1365-2796</issn><eissn>1365-2796</eissn><abstract>Background Patients with chronic kidney disease (CKD) have poor outcomes following myocardial infarction (MI). We performed an untargeted examination of 175 biomarkers to identify those with the strongest association with CKD and to examine the association of those biomarkers with long‐term outcomes. Methods A total of 175 different biomarkers from MI patients enrolled in the Swedish Web‐System for Enhancement and Development of Evidence‐Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART) registry were analysed either by a multiple reaction monitoring mass spectrometry assay or by a multiplex assay (proximity extension assay). Random forests statistical models were used to assess the predictor importance of biomarkers, CKD and outcomes. Results A total of 1098 MI patients with a median estimated glomerular filtration rate of 85 mL min−1/1.73 m2 were followed for a median of 3.2 years. The random forests analyses, without and with adjustment for differences in demography, comorbidities and severity of disease, identified six biomarkers (adrenomedullin, TNF receptor‐1, adipocyte fatty acid‐binding protein‐4, TNF‐related apoptosis‐inducing ligand receptor 2, growth differentiation factor‐15 and TNF receptor‐2) to be strongly associated with CKD. All six biomarkers were also amongst the 15 strongest predictors for death, and four of them were amongst the strongest predictors of subsequent MI and heart failure hospitalization. Conclusion In patients with MI, a proteomic approach could identify six biomarkers that best predicted CKD. These biomarkers were also amongst the most important predictors of long‐term outcomes. Thus, these biomarkers indicate underlying mechanisms that may contribute to the poor prognosis seen in patients with MI and CKD.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32638487</pmid><doi>10.1111/joim.13116</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2377-436X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-6820
ispartof Journal of internal medicine, 2020-11, Vol.288 (5), p.581-592
issn 0954-6820
1365-2796
1365-2796
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_469889
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects acute coronary syndrome and myocardial infarction
Adrenomedullin
Adrenomedullin - blood
Aged
Apoptosis
Assaying
Biomarkers
Biomarkers - blood
Cardiac and Cardiovascular Systems
Cardiovascular diseases
chronic kidney disease
Clinical Medicine
Congestive heart failure
Coronary artery disease
Demography
Fatty acids
Female
Glomerular filtration rate
Growth Differentiation Factor 15 - blood
Heart attacks
Heart diseases
Humans
Kardiologi
Kidney diseases
Kidneys
Klinisk medicin
Male
Mass spectrometry
Mass spectroscopy
Mathematical models
Median (statistics)
Medical and Health Sciences
Medicin och hälsovetenskap
Middle Aged
Myocardial infarction
Myocardial Infarction - complications
Perilipin-2 - blood
Proteomics
Receptors
Receptors, TNF-Related Apoptosis-Inducing Ligand - blood
Receptors, Tumor Necrosis Factor - blood
renal dysfunction
renal failure
Renal Insufficiency, Chronic - complications
Renal Insufficiency, Chronic - diagnosis
Statistical analysis
Statistical models
Tumor necrosis factor receptors
Urologi och njurmedicin
Urology and Nephrology
title Use of proteomics to identify biomarkers associated with chronic kidney disease and long‐term outcomes in patients with myocardial infarction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20proteomics%20to%20identify%20biomarkers%20associated%20with%20chronic%20kidney%20disease%20and%20long%E2%80%90term%20outcomes%20in%20patients%20with%20myocardial%20infarction&rft.jtitle=Journal%20of%20internal%20medicine&rft.au=Edfors,%20R.&rft.date=2020-11&rft.volume=288&rft.issue=5&rft.spage=581&rft.epage=592&rft.pages=581-592&rft.issn=0954-6820&rft.eissn=1365-2796&rft_id=info:doi/10.1111/joim.13116&rft_dat=%3Cproquest_swepu%3E2421459952%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452237421&rft_id=info:pmid/32638487&rfr_iscdi=true