Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders

The deviation between chronological age and age predicted using brain MRI is a putative marker of overall brain health. Age prediction based on structural MRI data shows high accuracy in common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2021-04, Vol.42 (6), p.1714-1726
Hauptverfasser: Rokicki, Jaroslav, Wolfers, Thomas, Nordhøy, Wibeke, Tesli, Natalia, Quintana, Daniel S., Alnæs, Dag, Richard, Genevieve, Lange, Ann‐Marie G., Lund, Martina J., Norbom, Linn, Agartz, Ingrid, Melle, Ingrid, Nærland, Terje, Selbæk, Geir, Persson, Karin, Nordvik, Jan Egil, Schwarz, Emanuel, Andreassen, Ole A., Kaufmann, Tobias, Westlye, Lars T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1726
container_issue 6
container_start_page 1714
container_title Human brain mapping
container_volume 42
creator Rokicki, Jaroslav
Wolfers, Thomas
Nordhøy, Wibeke
Tesli, Natalia
Quintana, Daniel S.
Alnæs, Dag
Richard, Genevieve
Lange, Ann‐Marie G.
Lund, Martina J.
Norbom, Linn
Agartz, Ingrid
Melle, Ingrid
Nærland, Terje
Selbæk, Geir
Persson, Karin
Nordvik, Jan Egil
Schwarz, Emanuel
Andreassen, Ole A.
Kaufmann, Tobias
Westlye, Lars T.
description The deviation between chronological age and age predicted using brain MRI is a putative marker of overall brain health. Age prediction based on structural MRI data shows high accuracy in common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences and the underlying biological processes. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF) based on arterial spin labeling. For each of the 11 models we assessed the age prediction accuracy in healthy controls (HC, n = 750) and compared the obtained brain age gaps (BAGs) between age‐matched subsets of HC and patients with Alzheimer's disease (AD, n = 54), mild (MCI, n = 90) and subjective (SCI, n = 56) cognitive impairment, schizophrenia spectrum (SZ, n = 159) and bipolar disorder (BD, n = 135). We found highest age prediction accuracy in HC when integrating all modalities. Furthermore, two‐group case–control classifications revealed highest accuracy for AD using global T1‐weighted BAG, while MCI, SCI, BD and SZ showed strongest effects in CBF‐based BAGs. Combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders. The multimodal BAG was most accurate in predicting age in HC, while group differences between patients and HC were often larger for BAGs based on single modalities. These findings indicate that multidimensional neuroimaging of patients may provide a brain‐based mapping of overlapping and distinct pathophysiology in common disorders. The deviation between chronological age and age predicted using brain MRI is a marker of overall brain health. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF). We found that, combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders.
doi_str_mv 10.1002/hbm.25323
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_465735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471462242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5553-e79820dc8994b52b9301b55bb98e2bc71038fe220076907b4a01e82ead28d08d3</originalsourceid><addsrcrecordid>eNp1ks1u1DAUhSMEomVgwQtAJDawSHttxxN7gwQVUKRWbGBt-a8zLkkc7GRG8wy8NHf-CkXqyjfJd86Nj05RvCRwRgDo-dJ0Z5Qzyh4VpwRkUwGR7PF2nvNK1g05KZ7lfAtACAfytDhhjNVABJwWv6-ndgxddLotQ6cXoV_gOaS48rk0SYe-1AtfDsm7YMcQ8bF3ZfIrr9tcupDH0Nux1KaPqdNtGAPqUDRonPoxl-swLsshb-wy6DEFu9P3fkqxjYtgcS2axOR8ys-LJzfo6l8czlnx4_On7xeX1dW3L18vPlxVlnPOKt9IQcFZIWVtODWSATGcGyOFp8Y2BJi48ZQCNHMJjak1EC-o144KB8KxWVHtffPaD5NRQ8Kbp42KOqjDq584eVXPecM48vJBHpNyf0VHIak540JizLPi_V6LQOedxUySbu9b3PvSh6VaxJVqZCMIk2jwem9g0y5shUFrRUBwqgSRzZZ4e1iR4q_J51F1IVvftrr3ccqKYgHqOaU1RfTNf-htnFKPYSvKQVKsEJ8j9e64Muac_M3d7xJQ28IpLJzaFQ7ZV__e7448NgyB8z2wDq3fPOykLj9e7y3_APFZ4t8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509232356</pqid></control><display><type>article</type><title>Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Rokicki, Jaroslav ; Wolfers, Thomas ; Nordhøy, Wibeke ; Tesli, Natalia ; Quintana, Daniel S. ; Alnæs, Dag ; Richard, Genevieve ; Lange, Ann‐Marie G. ; Lund, Martina J. ; Norbom, Linn ; Agartz, Ingrid ; Melle, Ingrid ; Nærland, Terje ; Selbæk, Geir ; Persson, Karin ; Nordvik, Jan Egil ; Schwarz, Emanuel ; Andreassen, Ole A. ; Kaufmann, Tobias ; Westlye, Lars T.</creator><creatorcontrib>Rokicki, Jaroslav ; Wolfers, Thomas ; Nordhøy, Wibeke ; Tesli, Natalia ; Quintana, Daniel S. ; Alnæs, Dag ; Richard, Genevieve ; Lange, Ann‐Marie G. ; Lund, Martina J. ; Norbom, Linn ; Agartz, Ingrid ; Melle, Ingrid ; Nærland, Terje ; Selbæk, Geir ; Persson, Karin ; Nordvik, Jan Egil ; Schwarz, Emanuel ; Andreassen, Ole A. ; Kaufmann, Tobias ; Westlye, Lars T.</creatorcontrib><description>The deviation between chronological age and age predicted using brain MRI is a putative marker of overall brain health. Age prediction based on structural MRI data shows high accuracy in common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences and the underlying biological processes. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF) based on arterial spin labeling. For each of the 11 models we assessed the age prediction accuracy in healthy controls (HC, n = 750) and compared the obtained brain age gaps (BAGs) between age‐matched subsets of HC and patients with Alzheimer's disease (AD, n = 54), mild (MCI, n = 90) and subjective (SCI, n = 56) cognitive impairment, schizophrenia spectrum (SZ, n = 159) and bipolar disorder (BD, n = 135). We found highest age prediction accuracy in HC when integrating all modalities. Furthermore, two‐group case–control classifications revealed highest accuracy for AD using global T1‐weighted BAG, while MCI, SCI, BD and SZ showed strongest effects in CBF‐based BAGs. Combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders. The multimodal BAG was most accurate in predicting age in HC, while group differences between patients and HC were often larger for BAGs based on single modalities. These findings indicate that multidimensional neuroimaging of patients may provide a brain‐based mapping of overlapping and distinct pathophysiology in common disorders. The deviation between chronological age and age predicted using brain MRI is a marker of overall brain health. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF). We found that, combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.25323</identifier><identifier>PMID: 33340180</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Abnormalities ; Accuracy ; Adolescent ; Adult ; Age ; Age Factors ; Aged ; Aged, 80 and over ; Aging ; Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - pathology ; Alzheimer's disease ; arterial spin labeling ; Biological activity ; Bipolar disorder ; Bipolar Disorder - diagnostic imaging ; Bipolar Disorder - pathology ; Blood flow ; Brain ; Brain - blood supply ; Brain - diagnostic imaging ; Brain - pathology ; brain age ; brain disorders ; Brain mapping ; Case-Control Studies ; Cerebral blood flow ; Cerebrovascular Circulation - physiology ; Cognitive ability ; Cognitive Dysfunction - diagnostic imaging ; Cognitive Dysfunction - pathology ; Deviation ; Female ; Humans ; machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Medicin och hälsovetenskap ; Mental disorders ; Middle Aged ; MRI ; Multimodal Imaging ; Neurodegenerative diseases ; Neuroimaging ; Neuroimaging - methods ; Neurological diseases ; Neurological disorders ; Predictions ; Schizophrenia ; Schizophrenia - diagnostic imaging ; Schizophrenia - pathology ; Spin labeling ; Spin Labels ; T1w/T2w ratio ; Young Adult</subject><ispartof>Human brain mapping, 2021-04, Vol.42 (6), p.1714-1726</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5553-e79820dc8994b52b9301b55bb98e2bc71038fe220076907b4a01e82ead28d08d3</citedby><cites>FETCH-LOGICAL-c5553-e79820dc8994b52b9301b55bb98e2bc71038fe220076907b4a01e82ead28d08d3</cites><orcidid>0000-0003-2876-0004 ; 0000-0001-6475-2576 ; 0000-0002-2679-9469 ; 0000-0001-8644-956X ; 0000-0003-3258-1674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978139/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978139/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,1417,11562,26567,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33340180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145358933$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Rokicki, Jaroslav</creatorcontrib><creatorcontrib>Wolfers, Thomas</creatorcontrib><creatorcontrib>Nordhøy, Wibeke</creatorcontrib><creatorcontrib>Tesli, Natalia</creatorcontrib><creatorcontrib>Quintana, Daniel S.</creatorcontrib><creatorcontrib>Alnæs, Dag</creatorcontrib><creatorcontrib>Richard, Genevieve</creatorcontrib><creatorcontrib>Lange, Ann‐Marie G.</creatorcontrib><creatorcontrib>Lund, Martina J.</creatorcontrib><creatorcontrib>Norbom, Linn</creatorcontrib><creatorcontrib>Agartz, Ingrid</creatorcontrib><creatorcontrib>Melle, Ingrid</creatorcontrib><creatorcontrib>Nærland, Terje</creatorcontrib><creatorcontrib>Selbæk, Geir</creatorcontrib><creatorcontrib>Persson, Karin</creatorcontrib><creatorcontrib>Nordvik, Jan Egil</creatorcontrib><creatorcontrib>Schwarz, Emanuel</creatorcontrib><creatorcontrib>Andreassen, Ole A.</creatorcontrib><creatorcontrib>Kaufmann, Tobias</creatorcontrib><creatorcontrib>Westlye, Lars T.</creatorcontrib><title>Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>The deviation between chronological age and age predicted using brain MRI is a putative marker of overall brain health. Age prediction based on structural MRI data shows high accuracy in common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences and the underlying biological processes. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF) based on arterial spin labeling. For each of the 11 models we assessed the age prediction accuracy in healthy controls (HC, n = 750) and compared the obtained brain age gaps (BAGs) between age‐matched subsets of HC and patients with Alzheimer's disease (AD, n = 54), mild (MCI, n = 90) and subjective (SCI, n = 56) cognitive impairment, schizophrenia spectrum (SZ, n = 159) and bipolar disorder (BD, n = 135). We found highest age prediction accuracy in HC when integrating all modalities. Furthermore, two‐group case–control classifications revealed highest accuracy for AD using global T1‐weighted BAG, while MCI, SCI, BD and SZ showed strongest effects in CBF‐based BAGs. Combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders. The multimodal BAG was most accurate in predicting age in HC, while group differences between patients and HC were often larger for BAGs based on single modalities. These findings indicate that multidimensional neuroimaging of patients may provide a brain‐based mapping of overlapping and distinct pathophysiology in common disorders. The deviation between chronological age and age predicted using brain MRI is a marker of overall brain health. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF). We found that, combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders.</description><subject>Abnormalities</subject><subject>Accuracy</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Age</subject><subject>Age Factors</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>arterial spin labeling</subject><subject>Biological activity</subject><subject>Bipolar disorder</subject><subject>Bipolar Disorder - diagnostic imaging</subject><subject>Bipolar Disorder - pathology</subject><subject>Blood flow</subject><subject>Brain</subject><subject>Brain - blood supply</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>brain age</subject><subject>brain disorders</subject><subject>Brain mapping</subject><subject>Case-Control Studies</subject><subject>Cerebral blood flow</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Cognitive Dysfunction - pathology</subject><subject>Deviation</subject><subject>Female</subject><subject>Humans</subject><subject>machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medicin och hälsovetenskap</subject><subject>Mental disorders</subject><subject>Middle Aged</subject><subject>MRI</subject><subject>Multimodal Imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurological diseases</subject><subject>Neurological disorders</subject><subject>Predictions</subject><subject>Schizophrenia</subject><subject>Schizophrenia - diagnostic imaging</subject><subject>Schizophrenia - pathology</subject><subject>Spin labeling</subject><subject>Spin Labels</subject><subject>T1w/T2w ratio</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>3HK</sourceid><sourceid>D8T</sourceid><recordid>eNp1ks1u1DAUhSMEomVgwQtAJDawSHttxxN7gwQVUKRWbGBt-a8zLkkc7GRG8wy8NHf-CkXqyjfJd86Nj05RvCRwRgDo-dJ0Z5Qzyh4VpwRkUwGR7PF2nvNK1g05KZ7lfAtACAfytDhhjNVABJwWv6-ndgxddLotQ6cXoV_gOaS48rk0SYe-1AtfDsm7YMcQ8bF3ZfIrr9tcupDH0Nux1KaPqdNtGAPqUDRonPoxl-swLsshb-wy6DEFu9P3fkqxjYtgcS2axOR8ys-LJzfo6l8czlnx4_On7xeX1dW3L18vPlxVlnPOKt9IQcFZIWVtODWSATGcGyOFp8Y2BJi48ZQCNHMJjak1EC-o144KB8KxWVHtffPaD5NRQ8Kbp42KOqjDq584eVXPecM48vJBHpNyf0VHIak540JizLPi_V6LQOedxUySbu9b3PvSh6VaxJVqZCMIk2jwem9g0y5shUFrRUBwqgSRzZZ4e1iR4q_J51F1IVvftrr3ccqKYgHqOaU1RfTNf-htnFKPYSvKQVKsEJ8j9e64Muac_M3d7xJQ28IpLJzaFQ7ZV__e7448NgyB8z2wDq3fPOykLj9e7y3_APFZ4t8</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Rokicki, Jaroslav</creator><creator>Wolfers, Thomas</creator><creator>Nordhøy, Wibeke</creator><creator>Tesli, Natalia</creator><creator>Quintana, Daniel S.</creator><creator>Alnæs, Dag</creator><creator>Richard, Genevieve</creator><creator>Lange, Ann‐Marie G.</creator><creator>Lund, Martina J.</creator><creator>Norbom, Linn</creator><creator>Agartz, Ingrid</creator><creator>Melle, Ingrid</creator><creator>Nærland, Terje</creator><creator>Selbæk, Geir</creator><creator>Persson, Karin</creator><creator>Nordvik, Jan Egil</creator><creator>Schwarz, Emanuel</creator><creator>Andreassen, Ole A.</creator><creator>Kaufmann, Tobias</creator><creator>Westlye, Lars T.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2876-0004</orcidid><orcidid>https://orcid.org/0000-0001-6475-2576</orcidid><orcidid>https://orcid.org/0000-0002-2679-9469</orcidid><orcidid>https://orcid.org/0000-0001-8644-956X</orcidid><orcidid>https://orcid.org/0000-0003-3258-1674</orcidid></search><sort><creationdate>20210415</creationdate><title>Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders</title><author>Rokicki, Jaroslav ; Wolfers, Thomas ; Nordhøy, Wibeke ; Tesli, Natalia ; Quintana, Daniel S. ; Alnæs, Dag ; Richard, Genevieve ; Lange, Ann‐Marie G. ; Lund, Martina J. ; Norbom, Linn ; Agartz, Ingrid ; Melle, Ingrid ; Nærland, Terje ; Selbæk, Geir ; Persson, Karin ; Nordvik, Jan Egil ; Schwarz, Emanuel ; Andreassen, Ole A. ; Kaufmann, Tobias ; Westlye, Lars T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5553-e79820dc8994b52b9301b55bb98e2bc71038fe220076907b4a01e82ead28d08d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Accuracy</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Age</topic><topic>Age Factors</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>arterial spin labeling</topic><topic>Biological activity</topic><topic>Bipolar disorder</topic><topic>Bipolar Disorder - diagnostic imaging</topic><topic>Bipolar Disorder - pathology</topic><topic>Blood flow</topic><topic>Brain</topic><topic>Brain - blood supply</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>brain age</topic><topic>brain disorders</topic><topic>Brain mapping</topic><topic>Case-Control Studies</topic><topic>Cerebral blood flow</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Cognitive Dysfunction - pathology</topic><topic>Deviation</topic><topic>Female</topic><topic>Humans</topic><topic>machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medicin och hälsovetenskap</topic><topic>Mental disorders</topic><topic>Middle Aged</topic><topic>MRI</topic><topic>Multimodal Imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurological diseases</topic><topic>Neurological disorders</topic><topic>Predictions</topic><topic>Schizophrenia</topic><topic>Schizophrenia - diagnostic imaging</topic><topic>Schizophrenia - pathology</topic><topic>Spin labeling</topic><topic>Spin Labels</topic><topic>T1w/T2w ratio</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rokicki, Jaroslav</creatorcontrib><creatorcontrib>Wolfers, Thomas</creatorcontrib><creatorcontrib>Nordhøy, Wibeke</creatorcontrib><creatorcontrib>Tesli, Natalia</creatorcontrib><creatorcontrib>Quintana, Daniel S.</creatorcontrib><creatorcontrib>Alnæs, Dag</creatorcontrib><creatorcontrib>Richard, Genevieve</creatorcontrib><creatorcontrib>Lange, Ann‐Marie G.</creatorcontrib><creatorcontrib>Lund, Martina J.</creatorcontrib><creatorcontrib>Norbom, Linn</creatorcontrib><creatorcontrib>Agartz, Ingrid</creatorcontrib><creatorcontrib>Melle, Ingrid</creatorcontrib><creatorcontrib>Nærland, Terje</creatorcontrib><creatorcontrib>Selbæk, Geir</creatorcontrib><creatorcontrib>Persson, Karin</creatorcontrib><creatorcontrib>Nordvik, Jan Egil</creatorcontrib><creatorcontrib>Schwarz, Emanuel</creatorcontrib><creatorcontrib>Andreassen, Ole A.</creatorcontrib><creatorcontrib>Kaufmann, Tobias</creatorcontrib><creatorcontrib>Westlye, Lars T.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rokicki, Jaroslav</au><au>Wolfers, Thomas</au><au>Nordhøy, Wibeke</au><au>Tesli, Natalia</au><au>Quintana, Daniel S.</au><au>Alnæs, Dag</au><au>Richard, Genevieve</au><au>Lange, Ann‐Marie G.</au><au>Lund, Martina J.</au><au>Norbom, Linn</au><au>Agartz, Ingrid</au><au>Melle, Ingrid</au><au>Nærland, Terje</au><au>Selbæk, Geir</au><au>Persson, Karin</au><au>Nordvik, Jan Egil</au><au>Schwarz, Emanuel</au><au>Andreassen, Ole A.</au><au>Kaufmann, Tobias</au><au>Westlye, Lars T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>42</volume><issue>6</issue><spage>1714</spage><epage>1726</epage><pages>1714-1726</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>The deviation between chronological age and age predicted using brain MRI is a putative marker of overall brain health. Age prediction based on structural MRI data shows high accuracy in common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences and the underlying biological processes. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF) based on arterial spin labeling. For each of the 11 models we assessed the age prediction accuracy in healthy controls (HC, n = 750) and compared the obtained brain age gaps (BAGs) between age‐matched subsets of HC and patients with Alzheimer's disease (AD, n = 54), mild (MCI, n = 90) and subjective (SCI, n = 56) cognitive impairment, schizophrenia spectrum (SZ, n = 159) and bipolar disorder (BD, n = 135). We found highest age prediction accuracy in HC when integrating all modalities. Furthermore, two‐group case–control classifications revealed highest accuracy for AD using global T1‐weighted BAG, while MCI, SCI, BD and SZ showed strongest effects in CBF‐based BAGs. Combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders. The multimodal BAG was most accurate in predicting age in HC, while group differences between patients and HC were often larger for BAGs based on single modalities. These findings indicate that multidimensional neuroimaging of patients may provide a brain‐based mapping of overlapping and distinct pathophysiology in common disorders. The deviation between chronological age and age predicted using brain MRI is a marker of overall brain health. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF). We found that, combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33340180</pmid><doi>10.1002/hbm.25323</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2876-0004</orcidid><orcidid>https://orcid.org/0000-0001-6475-2576</orcidid><orcidid>https://orcid.org/0000-0002-2679-9469</orcidid><orcidid>https://orcid.org/0000-0001-8644-956X</orcidid><orcidid>https://orcid.org/0000-0003-3258-1674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2021-04, Vol.42 (6), p.1714-1726
issn 1065-9471
1097-0193
1097-0193
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_465735
source MEDLINE; NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central
subjects Abnormalities
Accuracy
Adolescent
Adult
Age
Age Factors
Aged
Aged, 80 and over
Aging
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer's disease
arterial spin labeling
Biological activity
Bipolar disorder
Bipolar Disorder - diagnostic imaging
Bipolar Disorder - pathology
Blood flow
Brain
Brain - blood supply
Brain - diagnostic imaging
Brain - pathology
brain age
brain disorders
Brain mapping
Case-Control Studies
Cerebral blood flow
Cerebrovascular Circulation - physiology
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - pathology
Deviation
Female
Humans
machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Medicin och hälsovetenskap
Mental disorders
Middle Aged
MRI
Multimodal Imaging
Neurodegenerative diseases
Neuroimaging
Neuroimaging - methods
Neurological diseases
Neurological disorders
Predictions
Schizophrenia
Schizophrenia - diagnostic imaging
Schizophrenia - pathology
Spin labeling
Spin Labels
T1w/T2w ratio
Young Adult
title Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20imaging%20improves%20brain%20age%20prediction%20and%20reveals%20distinct%20abnormalities%20in%20patients%20with%20psychiatric%20and%20neurological%20disorders&rft.jtitle=Human%20brain%20mapping&rft.au=Rokicki,%20Jaroslav&rft.date=2021-04-15&rft.volume=42&rft.issue=6&rft.spage=1714&rft.epage=1726&rft.pages=1714-1726&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.25323&rft_dat=%3Cproquest_swepu%3E2471462242%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509232356&rft_id=info:pmid/33340180&rfr_iscdi=true