Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment
Human testis development in prenatal life involves complex changes in germline and somatic cell identity. To better understand, we profiled and analyzed ∼32,500 single-cell transcriptomes of testicular cells from embryonic, fetal, and infant stages. Our data show that at 6–7 weeks postfertilization,...
Gespeichert in:
Veröffentlicht in: | Cell stem cell 2021-04, Vol.28 (4), p.764-778.e4 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 778.e4 |
---|---|
container_issue | 4 |
container_start_page | 764 |
container_title | Cell stem cell |
container_volume | 28 |
creator | Guo, Jingtao Sosa, Enrique Chitiashvili, Tsotne Nie, Xichen Rojas, Ernesto Javier Oliver, Elizabeth Plath, Kathrin Hotaling, James M. Stukenborg, Jan-Bernd Clark, Amander T. Cairns, Bradley R. |
description | Human testis development in prenatal life involves complex changes in germline and somatic cell identity. To better understand, we profiled and analyzed ∼32,500 single-cell transcriptomes of testicular cells from embryonic, fetal, and infant stages. Our data show that at 6–7 weeks postfertilization, as the testicular cords are established, the Sertoli and interstitial cells originate from a common heterogeneous progenitor pool, which then resolves into fetal Sertoli cells (expressing tube-forming genes) or interstitial cells (including Leydig-lineage cells expressing steroidogenesis genes). Almost 10 weeks later, beginning at 14–16 weeks postfertilization, the male primordial germ cells exit mitosis, downregulate pluripotent transcription factors, and transition into cells that strongly resemble the state 0 spermatogonia originally defined in the infant and adult testes. Therefore, we called these fetal spermatogonia “state f0.” Overall, we reveal multiple insights into the coordinated and temporal development of the embryonic, fetal, and postnatal male germline together with the somatic niche.
[Display omitted]
•A transcriptional single-cell atlas of the fetal and postnatal human testes•Somatic niche cell types derive from a common progenitor ∼7 weeks after fertilization•PGCs transition directly into fetal state 0-like cells (state f0) starting at week 14•Fetal somatic niche cell specification precedes the PGC-to-state f0 transition
Guo et al. provide a transcriptional cell atlas of the fetal and postnatal human testes. Remarkably, starting from ∼14 weeks postfertilization, fetal primordial germ cells transition to a cell state highly similar to postnatal spermatogonial stem cells. Furthermore, somatic niche specification precedes this transition, which is consistent with guiding fetal germline development. |
doi_str_mv | 10.1016/j.stem.2020.12.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_465106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590920305889</els_id><sourcerecordid>2478586128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-a33705145ee599085d924f559d47c095bbc624a4579e6fca76b5019db5df34ae3</originalsourceid><addsrcrecordid>eNp9kc2OFCEQgDtG466rL-DBcPTSI9DQNIkxMRv_kk08qGdC09UzjDSM0DNmn8DXttoeN-7FE5Wqrz4KqqqeM7phlLWv9psyw7ThlGOCbygVD6pL1ilZa6XUQ4x1I2qpqb6onpSyp1QqRtXj6qJphGyYZJfVry8-bgPUDkIgNtpwW3whaSTzDsgAJwjpgATZHScbyQxlxnLGvA2FlDTZ2TsSvUP6j6IcwPnRO8yniMKBjDDbQLaQp-AjkGXkFUWX7YMvuwni_LR6NKISnp3Pq-rb-3dfrz_WN58_fLp-e1M7KfVc26ZRVDIhAaTWtJOD5mLE0iCUo1r2vWu5sEIqDe3orGp7SZkeejmMjbDQXFX16i0_4XDszSH7yeZbk6w359R3jMCIVjLaIv9m5bEyweBw1GzDvbb7leh3ZptOpqMcDYvg5VmQ048jvtlMvizvtxHSsRguVCe7lvEOUb6iLqdSMox31zBqlo2bvVm-zywbN4wb3Dg2vfh3wLuWvytG4PUKAH7ryUM2xXmIDgafwc1mSP5__t_EF8GU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478586128</pqid></control><display><type>article</type><title>Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><creator>Guo, Jingtao ; Sosa, Enrique ; Chitiashvili, Tsotne ; Nie, Xichen ; Rojas, Ernesto Javier ; Oliver, Elizabeth ; Plath, Kathrin ; Hotaling, James M. ; Stukenborg, Jan-Bernd ; Clark, Amander T. ; Cairns, Bradley R.</creator><creatorcontrib>Guo, Jingtao ; Sosa, Enrique ; Chitiashvili, Tsotne ; Nie, Xichen ; Rojas, Ernesto Javier ; Oliver, Elizabeth ; Plath, Kathrin ; Hotaling, James M. ; Stukenborg, Jan-Bernd ; Clark, Amander T. ; Cairns, Bradley R. ; DonorConnect</creatorcontrib><description>Human testis development in prenatal life involves complex changes in germline and somatic cell identity. To better understand, we profiled and analyzed ∼32,500 single-cell transcriptomes of testicular cells from embryonic, fetal, and infant stages. Our data show that at 6–7 weeks postfertilization, as the testicular cords are established, the Sertoli and interstitial cells originate from a common heterogeneous progenitor pool, which then resolves into fetal Sertoli cells (expressing tube-forming genes) or interstitial cells (including Leydig-lineage cells expressing steroidogenesis genes). Almost 10 weeks later, beginning at 14–16 weeks postfertilization, the male primordial germ cells exit mitosis, downregulate pluripotent transcription factors, and transition into cells that strongly resemble the state 0 spermatogonia originally defined in the infant and adult testes. Therefore, we called these fetal spermatogonia “state f0.” Overall, we reveal multiple insights into the coordinated and temporal development of the embryonic, fetal, and postnatal male germline together with the somatic niche.
[Display omitted]
•A transcriptional single-cell atlas of the fetal and postnatal human testes•Somatic niche cell types derive from a common progenitor ∼7 weeks after fertilization•PGCs transition directly into fetal state 0-like cells (state f0) starting at week 14•Fetal somatic niche cell specification precedes the PGC-to-state f0 transition
Guo et al. provide a transcriptional cell atlas of the fetal and postnatal human testes. Remarkably, starting from ∼14 weeks postfertilization, fetal primordial germ cells transition to a cell state highly similar to postnatal spermatogonial stem cells. Furthermore, somatic niche specification precedes this transition, which is consistent with guiding fetal germline development.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2020.12.004</identifier><identifier>PMID: 33453151</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Female ; fetal testis development ; Humans ; interstitial cell ; Leydig cell ; Male ; Pregnancy ; primordial germ cell ; Sertoli cell ; Sertoli Cells ; Single-Cell Analysis ; single-cell RNA sequencing ; Spermatogonia ; spermatogonial stem cell ; Stem Cells ; Testis</subject><ispartof>Cell stem cell, 2021-04, Vol.28 (4), p.764-778.e4</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-a33705145ee599085d924f559d47c095bbc624a4579e6fca76b5019db5df34ae3</citedby><cites>FETCH-LOGICAL-c559t-a33705145ee599085d924f559d47c095bbc624a4579e6fca76b5019db5df34ae3</cites><orcidid>0000-0001-7796-3372 ; 0000-0002-0159-5021 ; 0000-0002-2839-1870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1934590920305889$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33453151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:146371148$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jingtao</creatorcontrib><creatorcontrib>Sosa, Enrique</creatorcontrib><creatorcontrib>Chitiashvili, Tsotne</creatorcontrib><creatorcontrib>Nie, Xichen</creatorcontrib><creatorcontrib>Rojas, Ernesto Javier</creatorcontrib><creatorcontrib>Oliver, Elizabeth</creatorcontrib><creatorcontrib>Plath, Kathrin</creatorcontrib><creatorcontrib>Hotaling, James M.</creatorcontrib><creatorcontrib>Stukenborg, Jan-Bernd</creatorcontrib><creatorcontrib>Clark, Amander T.</creatorcontrib><creatorcontrib>Cairns, Bradley R.</creatorcontrib><creatorcontrib>DonorConnect</creatorcontrib><title>Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Human testis development in prenatal life involves complex changes in germline and somatic cell identity. To better understand, we profiled and analyzed ∼32,500 single-cell transcriptomes of testicular cells from embryonic, fetal, and infant stages. Our data show that at 6–7 weeks postfertilization, as the testicular cords are established, the Sertoli and interstitial cells originate from a common heterogeneous progenitor pool, which then resolves into fetal Sertoli cells (expressing tube-forming genes) or interstitial cells (including Leydig-lineage cells expressing steroidogenesis genes). Almost 10 weeks later, beginning at 14–16 weeks postfertilization, the male primordial germ cells exit mitosis, downregulate pluripotent transcription factors, and transition into cells that strongly resemble the state 0 spermatogonia originally defined in the infant and adult testes. Therefore, we called these fetal spermatogonia “state f0.” Overall, we reveal multiple insights into the coordinated and temporal development of the embryonic, fetal, and postnatal male germline together with the somatic niche.
[Display omitted]
•A transcriptional single-cell atlas of the fetal and postnatal human testes•Somatic niche cell types derive from a common progenitor ∼7 weeks after fertilization•PGCs transition directly into fetal state 0-like cells (state f0) starting at week 14•Fetal somatic niche cell specification precedes the PGC-to-state f0 transition
Guo et al. provide a transcriptional cell atlas of the fetal and postnatal human testes. Remarkably, starting from ∼14 weeks postfertilization, fetal primordial germ cells transition to a cell state highly similar to postnatal spermatogonial stem cells. Furthermore, somatic niche specification precedes this transition, which is consistent with guiding fetal germline development.</description><subject>Adult</subject><subject>Female</subject><subject>fetal testis development</subject><subject>Humans</subject><subject>interstitial cell</subject><subject>Leydig cell</subject><subject>Male</subject><subject>Pregnancy</subject><subject>primordial germ cell</subject><subject>Sertoli cell</subject><subject>Sertoli Cells</subject><subject>Single-Cell Analysis</subject><subject>single-cell RNA sequencing</subject><subject>Spermatogonia</subject><subject>spermatogonial stem cell</subject><subject>Stem Cells</subject><subject>Testis</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kc2OFCEQgDtG466rL-DBcPTSI9DQNIkxMRv_kk08qGdC09UzjDSM0DNmn8DXttoeN-7FE5Wqrz4KqqqeM7phlLWv9psyw7ThlGOCbygVD6pL1ilZa6XUQ4x1I2qpqb6onpSyp1QqRtXj6qJphGyYZJfVry8-bgPUDkIgNtpwW3whaSTzDsgAJwjpgATZHScbyQxlxnLGvA2FlDTZ2TsSvUP6j6IcwPnRO8yniMKBjDDbQLaQp-AjkGXkFUWX7YMvuwni_LR6NKISnp3Pq-rb-3dfrz_WN58_fLp-e1M7KfVc26ZRVDIhAaTWtJOD5mLE0iCUo1r2vWu5sEIqDe3orGp7SZkeejmMjbDQXFX16i0_4XDszSH7yeZbk6w359R3jMCIVjLaIv9m5bEyweBw1GzDvbb7leh3ZptOpqMcDYvg5VmQ048jvtlMvizvtxHSsRguVCe7lvEOUb6iLqdSMox31zBqlo2bvVm-zywbN4wb3Dg2vfh3wLuWvytG4PUKAH7ryUM2xXmIDgafwc1mSP5__t_EF8GU</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Guo, Jingtao</creator><creator>Sosa, Enrique</creator><creator>Chitiashvili, Tsotne</creator><creator>Nie, Xichen</creator><creator>Rojas, Ernesto Javier</creator><creator>Oliver, Elizabeth</creator><creator>Plath, Kathrin</creator><creator>Hotaling, James M.</creator><creator>Stukenborg, Jan-Bernd</creator><creator>Clark, Amander T.</creator><creator>Cairns, Bradley R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7796-3372</orcidid><orcidid>https://orcid.org/0000-0002-0159-5021</orcidid><orcidid>https://orcid.org/0000-0002-2839-1870</orcidid></search><sort><creationdate>20210401</creationdate><title>Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment</title><author>Guo, Jingtao ; Sosa, Enrique ; Chitiashvili, Tsotne ; Nie, Xichen ; Rojas, Ernesto Javier ; Oliver, Elizabeth ; Plath, Kathrin ; Hotaling, James M. ; Stukenborg, Jan-Bernd ; Clark, Amander T. ; Cairns, Bradley R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-a33705145ee599085d924f559d47c095bbc624a4579e6fca76b5019db5df34ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Female</topic><topic>fetal testis development</topic><topic>Humans</topic><topic>interstitial cell</topic><topic>Leydig cell</topic><topic>Male</topic><topic>Pregnancy</topic><topic>primordial germ cell</topic><topic>Sertoli cell</topic><topic>Sertoli Cells</topic><topic>Single-Cell Analysis</topic><topic>single-cell RNA sequencing</topic><topic>Spermatogonia</topic><topic>spermatogonial stem cell</topic><topic>Stem Cells</topic><topic>Testis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jingtao</creatorcontrib><creatorcontrib>Sosa, Enrique</creatorcontrib><creatorcontrib>Chitiashvili, Tsotne</creatorcontrib><creatorcontrib>Nie, Xichen</creatorcontrib><creatorcontrib>Rojas, Ernesto Javier</creatorcontrib><creatorcontrib>Oliver, Elizabeth</creatorcontrib><creatorcontrib>Plath, Kathrin</creatorcontrib><creatorcontrib>Hotaling, James M.</creatorcontrib><creatorcontrib>Stukenborg, Jan-Bernd</creatorcontrib><creatorcontrib>Clark, Amander T.</creatorcontrib><creatorcontrib>Cairns, Bradley R.</creatorcontrib><creatorcontrib>DonorConnect</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jingtao</au><au>Sosa, Enrique</au><au>Chitiashvili, Tsotne</au><au>Nie, Xichen</au><au>Rojas, Ernesto Javier</au><au>Oliver, Elizabeth</au><au>Plath, Kathrin</au><au>Hotaling, James M.</au><au>Stukenborg, Jan-Bernd</au><au>Clark, Amander T.</au><au>Cairns, Bradley R.</au><aucorp>DonorConnect</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>28</volume><issue>4</issue><spage>764</spage><epage>778.e4</epage><pages>764-778.e4</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Human testis development in prenatal life involves complex changes in germline and somatic cell identity. To better understand, we profiled and analyzed ∼32,500 single-cell transcriptomes of testicular cells from embryonic, fetal, and infant stages. Our data show that at 6–7 weeks postfertilization, as the testicular cords are established, the Sertoli and interstitial cells originate from a common heterogeneous progenitor pool, which then resolves into fetal Sertoli cells (expressing tube-forming genes) or interstitial cells (including Leydig-lineage cells expressing steroidogenesis genes). Almost 10 weeks later, beginning at 14–16 weeks postfertilization, the male primordial germ cells exit mitosis, downregulate pluripotent transcription factors, and transition into cells that strongly resemble the state 0 spermatogonia originally defined in the infant and adult testes. Therefore, we called these fetal spermatogonia “state f0.” Overall, we reveal multiple insights into the coordinated and temporal development of the embryonic, fetal, and postnatal male germline together with the somatic niche.
[Display omitted]
•A transcriptional single-cell atlas of the fetal and postnatal human testes•Somatic niche cell types derive from a common progenitor ∼7 weeks after fertilization•PGCs transition directly into fetal state 0-like cells (state f0) starting at week 14•Fetal somatic niche cell specification precedes the PGC-to-state f0 transition
Guo et al. provide a transcriptional cell atlas of the fetal and postnatal human testes. Remarkably, starting from ∼14 weeks postfertilization, fetal primordial germ cells transition to a cell state highly similar to postnatal spermatogonial stem cells. Furthermore, somatic niche specification precedes this transition, which is consistent with guiding fetal germline development.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33453151</pmid><doi>10.1016/j.stem.2020.12.004</doi><orcidid>https://orcid.org/0000-0001-7796-3372</orcidid><orcidid>https://orcid.org/0000-0002-0159-5021</orcidid><orcidid>https://orcid.org/0000-0002-2839-1870</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5909 |
ispartof | Cell stem cell, 2021-04, Vol.28 (4), p.764-778.e4 |
issn | 1934-5909 1875-9777 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_465106 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online |
subjects | Adult Female fetal testis development Humans interstitial cell Leydig cell Male Pregnancy primordial germ cell Sertoli cell Sertoli Cells Single-Cell Analysis single-cell RNA sequencing Spermatogonia spermatogonial stem cell Stem Cells Testis |
title | Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20analysis%20of%20the%20developing%20human%20testis%20reveals%20somatic%20niche%20cell%20specification%20and%20fetal%20germline%20stem%20cell%20establishment&rft.jtitle=Cell%20stem%20cell&rft.au=Guo,%20Jingtao&rft.aucorp=DonorConnect&rft.date=2021-04-01&rft.volume=28&rft.issue=4&rft.spage=764&rft.epage=778.e4&rft.pages=764-778.e4&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2020.12.004&rft_dat=%3Cproquest_swepu%3E2478586128%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478586128&rft_id=info:pmid/33453151&rft_els_id=S1934590920305889&rfr_iscdi=true |