Transplantation of Human Neural Precursor Cells Reverses Syrinx Growth in a Rat Model of Post-Traumatic Syringomyelia

Posttraumatic syringomyelia (PTS) is a serious condition of progressive expansion of spinal cord cysts, affecting patients with spinal cord injury years after injury. To evaluate neural cell therapy to prevent cyst expansion and potentially replace lost neurons, we developed a rat model of PTS. We c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurotherapeutics 2021-04, Vol.18 (2), p.1257-1272
Hauptverfasser: Xu, Ning, Xu, Tingting, Mirasol, Raymond, Holmberg, Lena, Vincent, Per Henrik, Li, Xiaofei, Falk, Anna, Benedikz, Eirikur, Rotstein, Emilia, Seiger, Åke, Åkesson, Elisabet, Falci, Scott, Sundström, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1272
container_issue 2
container_start_page 1257
container_title Neurotherapeutics
container_volume 18
creator Xu, Ning
Xu, Tingting
Mirasol, Raymond
Holmberg, Lena
Vincent, Per Henrik
Li, Xiaofei
Falk, Anna
Benedikz, Eirikur
Rotstein, Emilia
Seiger, Åke
Åkesson, Elisabet
Falci, Scott
Sundström, Erik
description Posttraumatic syringomyelia (PTS) is a serious condition of progressive expansion of spinal cord cysts, affecting patients with spinal cord injury years after injury. To evaluate neural cell therapy to prevent cyst expansion and potentially replace lost neurons, we developed a rat model of PTS. We combined contusive trauma with subarachnoid injections of blood, causing tethering of the spinal cord to the surrounding vertebrae, resulting in chronically expanding cysts. The cysts were usually located rostral to the injury, extracanalicular, lined by astrocytes. T2*-weighted magnetic resonance imaging (MRI) showed hyperintense fluid-filled cysts but also hypointense signals from debris and iron-laden macrophages/microglia. Two types of human neural stem/progenitor cells—fetal neural precursor cells (hNPCs) and neuroepithelial-like stem cells (hNESCs) derived from induced pluripotent stem cells—were transplanted to PTS cysts. Cells transplanted into cysts 10 weeks after injury survived at least 10 weeks, migrated into the surrounding parenchyma, but did not differentiate during this period. The cysts were partially obliterated by the cells, and cyst walls often merged with thin layers of cells in between. Cyst volume measurements with MRI showed that the volumes continued to expand in sham-transplanted rats by 102%, while the cyst expansion was effectively prevented by hNPCs and hNESCs transplantation, reducing the cyst volumes by 18.8% and 46.8%, respectively. The volume reductions far exceeded the volume of the added human cells. Thus, in an animal model closely mimicking the clinical situation, we provide proof-of-principle that transplantation of human neural stem/progenitor cells can be used as treatment for PTS.
doi_str_mv 10.1007/s13311-020-00987-3
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_465005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479422386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-8e6523d3adde0b3d3d6a833dabb65d3e6c5428e68385da28d67190952d4ab17a3</originalsourceid><addsrcrecordid>eNp9UsFu1DAQtRAVLQs_wAFZ4sLFYHvixLkgoRW0SKWtSjlbTjzbpiT21k5a9u_xkqW0HDh55HnzPH7vEfJK8HeC8-p9EgBCMC4547zWFYMn5EDoSrOqqOqnua4BWCUF7JPnKV1zrgBq_YzsAxRlrWV9QKaLaH1a99aPduyCp2FFj6bBenqCU7Q9PYvYTjGFSJfY94me4y3GhIl-28TO_6SHMdyNV7Tz1NJzO9KvwWG_ZTkLaWSZPZONXTvDL8Owwb6zL8jeyvYJX-7OBfn--dPF8ogdnx5-WX48Zq0ScmQaSyXBgXUOeZMLV1oN4GzTlMoBlq0qZAZp0MpZqV1ZiZrXSrrCNqKysCBs5k13uJ4as47dYOPGBNuZ3dWPXKEpSrVVZ0E-zPjcGdC16MeswaOxxx3fXZnLcGt0IaEGnQne7ghiuJkwjWboUpuFsx7DlIzMxhRSgi4z9M0_0OswRZ_lMFJld1Q1byRnVBtDShFX98sIbrYpMHMKTE6B-Z0CA3no9cNv3I_8sT0DYKfLeusKxr9v_4f2FwKuv_E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569857005</pqid></control><display><type>article</type><title>Transplantation of Human Neural Precursor Cells Reverses Syrinx Growth in a Rat Model of Post-Traumatic Syringomyelia</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Xu, Ning ; Xu, Tingting ; Mirasol, Raymond ; Holmberg, Lena ; Vincent, Per Henrik ; Li, Xiaofei ; Falk, Anna ; Benedikz, Eirikur ; Rotstein, Emilia ; Seiger, Åke ; Åkesson, Elisabet ; Falci, Scott ; Sundström, Erik</creator><creatorcontrib>Xu, Ning ; Xu, Tingting ; Mirasol, Raymond ; Holmberg, Lena ; Vincent, Per Henrik ; Li, Xiaofei ; Falk, Anna ; Benedikz, Eirikur ; Rotstein, Emilia ; Seiger, Åke ; Åkesson, Elisabet ; Falci, Scott ; Sundström, Erik</creatorcontrib><description>Posttraumatic syringomyelia (PTS) is a serious condition of progressive expansion of spinal cord cysts, affecting patients with spinal cord injury years after injury. To evaluate neural cell therapy to prevent cyst expansion and potentially replace lost neurons, we developed a rat model of PTS. We combined contusive trauma with subarachnoid injections of blood, causing tethering of the spinal cord to the surrounding vertebrae, resulting in chronically expanding cysts. The cysts were usually located rostral to the injury, extracanalicular, lined by astrocytes. T2*-weighted magnetic resonance imaging (MRI) showed hyperintense fluid-filled cysts but also hypointense signals from debris and iron-laden macrophages/microglia. Two types of human neural stem/progenitor cells—fetal neural precursor cells (hNPCs) and neuroepithelial-like stem cells (hNESCs) derived from induced pluripotent stem cells—were transplanted to PTS cysts. Cells transplanted into cysts 10 weeks after injury survived at least 10 weeks, migrated into the surrounding parenchyma, but did not differentiate during this period. The cysts were partially obliterated by the cells, and cyst walls often merged with thin layers of cells in between. Cyst volume measurements with MRI showed that the volumes continued to expand in sham-transplanted rats by 102%, while the cyst expansion was effectively prevented by hNPCs and hNESCs transplantation, reducing the cyst volumes by 18.8% and 46.8%, respectively. The volume reductions far exceeded the volume of the added human cells. Thus, in an animal model closely mimicking the clinical situation, we provide proof-of-principle that transplantation of human neural stem/progenitor cells can be used as treatment for PTS.</description><identifier>ISSN: 1933-7213</identifier><identifier>ISSN: 1878-7479</identifier><identifier>EISSN: 1878-7479</identifier><identifier>DOI: 10.1007/s13311-020-00987-3</identifier><identifier>PMID: 33469829</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal models ; Animals ; Astrocytes ; Biomedical and Life Sciences ; Biomedicine ; Cell therapy ; Cells, Cultured ; Cysts ; Disease Models, Animal ; Embryonic Stem Cells - transplantation ; Female ; Fetuses ; Humans ; Induced Pluripotent Stem Cells - transplantation ; Macrophages ; Magnetic resonance imaging ; Microglia ; Mimicry ; Neural stem cells ; Neurobiology ; Neurology ; Neurosciences ; Neurosurgery ; Original ; Original Article ; Parenchyma ; Pluripotency ; Progenitor cells ; Rats ; Rats, Sprague-Dawley ; Spinal cord ; Spinal cord injuries ; Spinal Cord Injuries - complications ; Spinal Cord Injuries - pathology ; Spinal Cord Injuries - therapy ; Spine ; Stem cell transplantation ; Stem Cell Transplantation - methods ; Stem cells ; Syringomyelia - etiology ; Syringomyelia - pathology ; Syringomyelia - therapy ; Thoracic Vertebrae - injuries ; Trauma ; Vertebrae</subject><ispartof>Neurotherapeutics, 2021-04, Vol.18 (2), p.1257-1272</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-8e6523d3adde0b3d3d6a833dabb65d3e6c5428e68385da28d67190952d4ab17a3</citedby><cites>FETCH-LOGICAL-c512t-8e6523d3adde0b3d3d6a833dabb65d3e6c5428e68385da28d67190952d4ab17a3</cites><orcidid>0000-0003-2931-8015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423938/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423938/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33469829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145713026$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Xu, Tingting</creatorcontrib><creatorcontrib>Mirasol, Raymond</creatorcontrib><creatorcontrib>Holmberg, Lena</creatorcontrib><creatorcontrib>Vincent, Per Henrik</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Falk, Anna</creatorcontrib><creatorcontrib>Benedikz, Eirikur</creatorcontrib><creatorcontrib>Rotstein, Emilia</creatorcontrib><creatorcontrib>Seiger, Åke</creatorcontrib><creatorcontrib>Åkesson, Elisabet</creatorcontrib><creatorcontrib>Falci, Scott</creatorcontrib><creatorcontrib>Sundström, Erik</creatorcontrib><title>Transplantation of Human Neural Precursor Cells Reverses Syrinx Growth in a Rat Model of Post-Traumatic Syringomyelia</title><title>Neurotherapeutics</title><addtitle>Neurotherapeutics</addtitle><addtitle>Neurotherapeutics</addtitle><description>Posttraumatic syringomyelia (PTS) is a serious condition of progressive expansion of spinal cord cysts, affecting patients with spinal cord injury years after injury. To evaluate neural cell therapy to prevent cyst expansion and potentially replace lost neurons, we developed a rat model of PTS. We combined contusive trauma with subarachnoid injections of blood, causing tethering of the spinal cord to the surrounding vertebrae, resulting in chronically expanding cysts. The cysts were usually located rostral to the injury, extracanalicular, lined by astrocytes. T2*-weighted magnetic resonance imaging (MRI) showed hyperintense fluid-filled cysts but also hypointense signals from debris and iron-laden macrophages/microglia. Two types of human neural stem/progenitor cells—fetal neural precursor cells (hNPCs) and neuroepithelial-like stem cells (hNESCs) derived from induced pluripotent stem cells—were transplanted to PTS cysts. Cells transplanted into cysts 10 weeks after injury survived at least 10 weeks, migrated into the surrounding parenchyma, but did not differentiate during this period. The cysts were partially obliterated by the cells, and cyst walls often merged with thin layers of cells in between. Cyst volume measurements with MRI showed that the volumes continued to expand in sham-transplanted rats by 102%, while the cyst expansion was effectively prevented by hNPCs and hNESCs transplantation, reducing the cyst volumes by 18.8% and 46.8%, respectively. The volume reductions far exceeded the volume of the added human cells. Thus, in an animal model closely mimicking the clinical situation, we provide proof-of-principle that transplantation of human neural stem/progenitor cells can be used as treatment for PTS.</description><subject>Animal models</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell therapy</subject><subject>Cells, Cultured</subject><subject>Cysts</subject><subject>Disease Models, Animal</subject><subject>Embryonic Stem Cells - transplantation</subject><subject>Female</subject><subject>Fetuses</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - transplantation</subject><subject>Macrophages</subject><subject>Magnetic resonance imaging</subject><subject>Microglia</subject><subject>Mimicry</subject><subject>Neural stem cells</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Original</subject><subject>Original Article</subject><subject>Parenchyma</subject><subject>Pluripotency</subject><subject>Progenitor cells</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Spinal cord</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - complications</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Spinal Cord Injuries - therapy</subject><subject>Spine</subject><subject>Stem cell transplantation</subject><subject>Stem Cell Transplantation - methods</subject><subject>Stem cells</subject><subject>Syringomyelia - etiology</subject><subject>Syringomyelia - pathology</subject><subject>Syringomyelia - therapy</subject><subject>Thoracic Vertebrae - injuries</subject><subject>Trauma</subject><subject>Vertebrae</subject><issn>1933-7213</issn><issn>1878-7479</issn><issn>1878-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><recordid>eNp9UsFu1DAQtRAVLQs_wAFZ4sLFYHvixLkgoRW0SKWtSjlbTjzbpiT21k5a9u_xkqW0HDh55HnzPH7vEfJK8HeC8-p9EgBCMC4547zWFYMn5EDoSrOqqOqnua4BWCUF7JPnKV1zrgBq_YzsAxRlrWV9QKaLaH1a99aPduyCp2FFj6bBenqCU7Q9PYvYTjGFSJfY94me4y3GhIl-28TO_6SHMdyNV7Tz1NJzO9KvwWG_ZTkLaWSZPZONXTvDL8Owwb6zL8jeyvYJX-7OBfn--dPF8ogdnx5-WX48Zq0ScmQaSyXBgXUOeZMLV1oN4GzTlMoBlq0qZAZp0MpZqV1ZiZrXSrrCNqKysCBs5k13uJ4as47dYOPGBNuZ3dWPXKEpSrVVZ0E-zPjcGdC16MeswaOxxx3fXZnLcGt0IaEGnQne7ghiuJkwjWboUpuFsx7DlIzMxhRSgi4z9M0_0OswRZ_lMFJld1Q1byRnVBtDShFX98sIbrYpMHMKTE6B-Z0CA3no9cNv3I_8sT0DYKfLeusKxr9v_4f2FwKuv_E</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Xu, Ning</creator><creator>Xu, Tingting</creator><creator>Mirasol, Raymond</creator><creator>Holmberg, Lena</creator><creator>Vincent, Per Henrik</creator><creator>Li, Xiaofei</creator><creator>Falk, Anna</creator><creator>Benedikz, Eirikur</creator><creator>Rotstein, Emilia</creator><creator>Seiger, Åke</creator><creator>Åkesson, Elisabet</creator><creator>Falci, Scott</creator><creator>Sundström, Erik</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2931-8015</orcidid></search><sort><creationdate>20210401</creationdate><title>Transplantation of Human Neural Precursor Cells Reverses Syrinx Growth in a Rat Model of Post-Traumatic Syringomyelia</title><author>Xu, Ning ; Xu, Tingting ; Mirasol, Raymond ; Holmberg, Lena ; Vincent, Per Henrik ; Li, Xiaofei ; Falk, Anna ; Benedikz, Eirikur ; Rotstein, Emilia ; Seiger, Åke ; Åkesson, Elisabet ; Falci, Scott ; Sundström, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-8e6523d3adde0b3d3d6a833dabb65d3e6c5428e68385da28d67190952d4ab17a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell therapy</topic><topic>Cells, Cultured</topic><topic>Cysts</topic><topic>Disease Models, Animal</topic><topic>Embryonic Stem Cells - transplantation</topic><topic>Female</topic><topic>Fetuses</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - transplantation</topic><topic>Macrophages</topic><topic>Magnetic resonance imaging</topic><topic>Microglia</topic><topic>Mimicry</topic><topic>Neural stem cells</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Original</topic><topic>Original Article</topic><topic>Parenchyma</topic><topic>Pluripotency</topic><topic>Progenitor cells</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Spinal cord</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - complications</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Spinal Cord Injuries - therapy</topic><topic>Spine</topic><topic>Stem cell transplantation</topic><topic>Stem Cell Transplantation - methods</topic><topic>Stem cells</topic><topic>Syringomyelia - etiology</topic><topic>Syringomyelia - pathology</topic><topic>Syringomyelia - therapy</topic><topic>Thoracic Vertebrae - injuries</topic><topic>Trauma</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Xu, Tingting</creatorcontrib><creatorcontrib>Mirasol, Raymond</creatorcontrib><creatorcontrib>Holmberg, Lena</creatorcontrib><creatorcontrib>Vincent, Per Henrik</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Falk, Anna</creatorcontrib><creatorcontrib>Benedikz, Eirikur</creatorcontrib><creatorcontrib>Rotstein, Emilia</creatorcontrib><creatorcontrib>Seiger, Åke</creatorcontrib><creatorcontrib>Åkesson, Elisabet</creatorcontrib><creatorcontrib>Falci, Scott</creatorcontrib><creatorcontrib>Sundström, Erik</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Neurotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ning</au><au>Xu, Tingting</au><au>Mirasol, Raymond</au><au>Holmberg, Lena</au><au>Vincent, Per Henrik</au><au>Li, Xiaofei</au><au>Falk, Anna</au><au>Benedikz, Eirikur</au><au>Rotstein, Emilia</au><au>Seiger, Åke</au><au>Åkesson, Elisabet</au><au>Falci, Scott</au><au>Sundström, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transplantation of Human Neural Precursor Cells Reverses Syrinx Growth in a Rat Model of Post-Traumatic Syringomyelia</atitle><jtitle>Neurotherapeutics</jtitle><stitle>Neurotherapeutics</stitle><addtitle>Neurotherapeutics</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>1257</spage><epage>1272</epage><pages>1257-1272</pages><issn>1933-7213</issn><issn>1878-7479</issn><eissn>1878-7479</eissn><abstract>Posttraumatic syringomyelia (PTS) is a serious condition of progressive expansion of spinal cord cysts, affecting patients with spinal cord injury years after injury. To evaluate neural cell therapy to prevent cyst expansion and potentially replace lost neurons, we developed a rat model of PTS. We combined contusive trauma with subarachnoid injections of blood, causing tethering of the spinal cord to the surrounding vertebrae, resulting in chronically expanding cysts. The cysts were usually located rostral to the injury, extracanalicular, lined by astrocytes. T2*-weighted magnetic resonance imaging (MRI) showed hyperintense fluid-filled cysts but also hypointense signals from debris and iron-laden macrophages/microglia. Two types of human neural stem/progenitor cells—fetal neural precursor cells (hNPCs) and neuroepithelial-like stem cells (hNESCs) derived from induced pluripotent stem cells—were transplanted to PTS cysts. Cells transplanted into cysts 10 weeks after injury survived at least 10 weeks, migrated into the surrounding parenchyma, but did not differentiate during this period. The cysts were partially obliterated by the cells, and cyst walls often merged with thin layers of cells in between. Cyst volume measurements with MRI showed that the volumes continued to expand in sham-transplanted rats by 102%, while the cyst expansion was effectively prevented by hNPCs and hNESCs transplantation, reducing the cyst volumes by 18.8% and 46.8%, respectively. The volume reductions far exceeded the volume of the added human cells. Thus, in an animal model closely mimicking the clinical situation, we provide proof-of-principle that transplantation of human neural stem/progenitor cells can be used as treatment for PTS.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33469829</pmid><doi>10.1007/s13311-020-00987-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2931-8015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-7213
ispartof Neurotherapeutics, 2021-04, Vol.18 (2), p.1257-1272
issn 1933-7213
1878-7479
1878-7479
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_465005
source MEDLINE; Springer Nature - Complete Springer Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online
subjects Animal models
Animals
Astrocytes
Biomedical and Life Sciences
Biomedicine
Cell therapy
Cells, Cultured
Cysts
Disease Models, Animal
Embryonic Stem Cells - transplantation
Female
Fetuses
Humans
Induced Pluripotent Stem Cells - transplantation
Macrophages
Magnetic resonance imaging
Microglia
Mimicry
Neural stem cells
Neurobiology
Neurology
Neurosciences
Neurosurgery
Original
Original Article
Parenchyma
Pluripotency
Progenitor cells
Rats
Rats, Sprague-Dawley
Spinal cord
Spinal cord injuries
Spinal Cord Injuries - complications
Spinal Cord Injuries - pathology
Spinal Cord Injuries - therapy
Spine
Stem cell transplantation
Stem Cell Transplantation - methods
Stem cells
Syringomyelia - etiology
Syringomyelia - pathology
Syringomyelia - therapy
Thoracic Vertebrae - injuries
Trauma
Vertebrae
title Transplantation of Human Neural Precursor Cells Reverses Syrinx Growth in a Rat Model of Post-Traumatic Syringomyelia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transplantation%20of%20Human%20Neural%20Precursor%20Cells%20Reverses%20Syrinx%20Growth%20in%20a%20Rat%20Model%20of%20Post-Traumatic%20Syringomyelia&rft.jtitle=Neurotherapeutics&rft.au=Xu,%20Ning&rft.date=2021-04-01&rft.volume=18&rft.issue=2&rft.spage=1257&rft.epage=1272&rft.pages=1257-1272&rft.issn=1933-7213&rft.eissn=1878-7479&rft_id=info:doi/10.1007/s13311-020-00987-3&rft_dat=%3Cproquest_swepu%3E2479422386%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569857005&rft_id=info:pmid/33469829&rfr_iscdi=true