Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model
We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node...
Gespeichert in:
Veröffentlicht in: | Biometrics 2022-03, Vol.78 (1), p.376-387 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | 1 |
container_start_page | 376 |
container_title | Biometrics |
container_volume | 78 |
creator | Isheden, Gabriel Czene, Kamila Humphreys, Keith |
description | We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node spread. The model of lymph node spread can be estimated in isolation from measurements of tumor volume and number of affected lymph nodes, giving inference identical to the joint model. Here, we extend our model to include covariate effects. We also derive theoretical results in order to study the role of screening on lymph node metastases at diagnosis. We analyze the association between hormone replacement therapy (HRT) and breast cancer lymph node spread, using data from a case‐control study designed specifically to study the effects of HRT on breast cancer. Using our method, we estimate that women using HRT at time of diagnosis have a 36% lower rate of lymph node spread than nonusers (95% confidence interval [CI] =(8%,58%)). This can be contrasted with the effect of HRT on the tumor growth rate, estimated here to be 15% slower in HRT users (95% CI = (−34%,+7%)). For screen‐detected cancers, we illustrate how lead time can relate to lymph node spread; and using symptomatic cancers, we illustrate the potential consequences of false negative screens in terms of lymph node spread. |
doi_str_mv | 10.1111/biom.13430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_464833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645533765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4810-167ec3c250d6fd329264deb36b75857dc3f784bdd9593d18cc496a13d1fc21e73</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhoModq3e-AMk4I0IU5PJx8x4V4sfhUpBFLwLmeRMd-pMsk1mXPZv-Is929lWEDSEJCc873tywiHkOWcnHMebto_jCRdSsAdkxZXkBZMle0hWjDFdCMm_H5EnOV9j2ChWPiZHQijGtRQr8uuLDT6OFLoO3JTpGD0MmcaODrtxs6YBYzrCZDNOyLQPtE2AEXU2OEhv6c1sw9R3uz5c0WkNNMUBbg1c_GlTbyeMMAfNLgGEPTXn_WoRQGGY45zpVYrbab1kf0oedXbI8OywH5NvH95_PftUXFx-PD87vSicrDkruK7ACVcq5nXnRdmUWnpohW4rVavKO9FVtWy9b1QjPK-dk422HI-dKzlU4pgUi2_ewmZuzSb1o007E21vDlc_8ARGalkLgXzzT36Tov8juhNyqeqy5mWD2leLFsGbGfJkxj47GAYbAOs3JZakBebhiL78C72Ocwr4EwYrVEqISiukXi-USzHnBN39czgz-64w-64wt12B8IuD5dyO4O_RuzZAgC_Ath9g9x8r8-788vNi-hst6cWE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645533765</pqid></control><display><type>article</type><title>Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model</title><source>MEDLINE</source><source>Wiley Journals</source><source>SWEPUB Freely available online</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Isheden, Gabriel ; Czene, Kamila ; Humphreys, Keith</creator><creatorcontrib>Isheden, Gabriel ; Czene, Kamila ; Humphreys, Keith</creatorcontrib><description>We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node spread. The model of lymph node spread can be estimated in isolation from measurements of tumor volume and number of affected lymph nodes, giving inference identical to the joint model. Here, we extend our model to include covariate effects. We also derive theoretical results in order to study the role of screening on lymph node metastases at diagnosis. We analyze the association between hormone replacement therapy (HRT) and breast cancer lymph node spread, using data from a case‐control study designed specifically to study the effects of HRT on breast cancer. Using our method, we estimate that women using HRT at time of diagnosis have a 36% lower rate of lymph node spread than nonusers (95% confidence interval [CI] =(8%,58%)). This can be contrasted with the effect of HRT on the tumor growth rate, estimated here to be 15% slower in HRT users (95% CI = (−34%,+7%)). For screen‐detected cancers, we illustrate how lead time can relate to lymph node spread; and using symptomatic cancers, we illustrate the potential consequences of false negative screens in terms of lymph node spread.</description><identifier>ISSN: 0006-341X</identifier><identifier>ISSN: 1541-0420</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13430</identifier><identifier>PMID: 33501643</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Breast cancer ; Breast Neoplasms - diagnostic imaging ; Case-Control Studies ; Confidence intervals ; continuous growth model ; Diagnosis ; Early Detection of Cancer ; Female ; Growth models ; Growth rate ; Hormone replacement therapy ; Humans ; Lead time ; lymph node metastases ; Lymph nodes ; Lymphatic Metastasis ; Lymphatic system ; Lymphoma ; Mammography ; Medicin och hälsovetenskap ; Metastases ; Metastasis ; random effect ; Screening ; tumor growth ; Tumors</subject><ispartof>Biometrics, 2022-03, Vol.78 (1), p.376-387</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of International Biometric Society.</rights><rights>2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4810-167ec3c250d6fd329264deb36b75857dc3f784bdd9593d18cc496a13d1fc21e73</citedby><cites>FETCH-LOGICAL-c4810-167ec3c250d6fd329264deb36b75857dc3f784bdd9593d18cc496a13d1fc21e73</cites><orcidid>0000-0003-2536-2051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13430$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13430$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33501643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145828129$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Isheden, Gabriel</creatorcontrib><creatorcontrib>Czene, Kamila</creatorcontrib><creatorcontrib>Humphreys, Keith</creatorcontrib><title>Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node spread. The model of lymph node spread can be estimated in isolation from measurements of tumor volume and number of affected lymph nodes, giving inference identical to the joint model. Here, we extend our model to include covariate effects. We also derive theoretical results in order to study the role of screening on lymph node metastases at diagnosis. We analyze the association between hormone replacement therapy (HRT) and breast cancer lymph node spread, using data from a case‐control study designed specifically to study the effects of HRT on breast cancer. Using our method, we estimate that women using HRT at time of diagnosis have a 36% lower rate of lymph node spread than nonusers (95% confidence interval [CI] =(8%,58%)). This can be contrasted with the effect of HRT on the tumor growth rate, estimated here to be 15% slower in HRT users (95% CI = (−34%,+7%)). For screen‐detected cancers, we illustrate how lead time can relate to lymph node spread; and using symptomatic cancers, we illustrate the potential consequences of false negative screens in terms of lymph node spread.</description><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Case-Control Studies</subject><subject>Confidence intervals</subject><subject>continuous growth model</subject><subject>Diagnosis</subject><subject>Early Detection of Cancer</subject><subject>Female</subject><subject>Growth models</subject><subject>Growth rate</subject><subject>Hormone replacement therapy</subject><subject>Humans</subject><subject>Lead time</subject><subject>lymph node metastases</subject><subject>Lymph nodes</subject><subject>Lymphatic Metastasis</subject><subject>Lymphatic system</subject><subject>Lymphoma</subject><subject>Mammography</subject><subject>Medicin och hälsovetenskap</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>random effect</subject><subject>Screening</subject><subject>tumor growth</subject><subject>Tumors</subject><issn>0006-341X</issn><issn>1541-0420</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kl1rFDEUhoModq3e-AMk4I0IU5PJx8x4V4sfhUpBFLwLmeRMd-pMsk1mXPZv-Is929lWEDSEJCc873tywiHkOWcnHMebto_jCRdSsAdkxZXkBZMle0hWjDFdCMm_H5EnOV9j2ChWPiZHQijGtRQr8uuLDT6OFLoO3JTpGD0MmcaODrtxs6YBYzrCZDNOyLQPtE2AEXU2OEhv6c1sw9R3uz5c0WkNNMUBbg1c_GlTbyeMMAfNLgGEPTXn_WoRQGGY45zpVYrbab1kf0oedXbI8OywH5NvH95_PftUXFx-PD87vSicrDkruK7ACVcq5nXnRdmUWnpohW4rVavKO9FVtWy9b1QjPK-dk422HI-dKzlU4pgUi2_ewmZuzSb1o007E21vDlc_8ARGalkLgXzzT36Tov8juhNyqeqy5mWD2leLFsGbGfJkxj47GAYbAOs3JZakBebhiL78C72Ocwr4EwYrVEqISiukXi-USzHnBN39czgz-64w-64wt12B8IuD5dyO4O_RuzZAgC_Ath9g9x8r8-788vNi-hst6cWE</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Isheden, Gabriel</creator><creator>Czene, Kamila</creator><creator>Humphreys, Keith</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2536-2051</orcidid></search><sort><creationdate>202203</creationdate><title>Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model</title><author>Isheden, Gabriel ; Czene, Kamila ; Humphreys, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4810-167ec3c250d6fd329264deb36b75857dc3f784bdd9593d18cc496a13d1fc21e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Case-Control Studies</topic><topic>Confidence intervals</topic><topic>continuous growth model</topic><topic>Diagnosis</topic><topic>Early Detection of Cancer</topic><topic>Female</topic><topic>Growth models</topic><topic>Growth rate</topic><topic>Hormone replacement therapy</topic><topic>Humans</topic><topic>Lead time</topic><topic>lymph node metastases</topic><topic>Lymph nodes</topic><topic>Lymphatic Metastasis</topic><topic>Lymphatic system</topic><topic>Lymphoma</topic><topic>Mammography</topic><topic>Medicin och hälsovetenskap</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>random effect</topic><topic>Screening</topic><topic>tumor growth</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isheden, Gabriel</creatorcontrib><creatorcontrib>Czene, Kamila</creatorcontrib><creatorcontrib>Humphreys, Keith</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isheden, Gabriel</au><au>Czene, Kamila</au><au>Humphreys, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2022-03</date><risdate>2022</risdate><volume>78</volume><issue>1</issue><spage>376</spage><epage>387</epage><pages>376-387</pages><issn>0006-341X</issn><issn>1541-0420</issn><eissn>1541-0420</eissn><abstract>We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node spread. The model of lymph node spread can be estimated in isolation from measurements of tumor volume and number of affected lymph nodes, giving inference identical to the joint model. Here, we extend our model to include covariate effects. We also derive theoretical results in order to study the role of screening on lymph node metastases at diagnosis. We analyze the association between hormone replacement therapy (HRT) and breast cancer lymph node spread, using data from a case‐control study designed specifically to study the effects of HRT on breast cancer. Using our method, we estimate that women using HRT at time of diagnosis have a 36% lower rate of lymph node spread than nonusers (95% confidence interval [CI] =(8%,58%)). This can be contrasted with the effect of HRT on the tumor growth rate, estimated here to be 15% slower in HRT users (95% CI = (−34%,+7%)). For screen‐detected cancers, we illustrate how lead time can relate to lymph node spread; and using symptomatic cancers, we illustrate the potential consequences of false negative screens in terms of lymph node spread.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>33501643</pmid><doi>10.1111/biom.13430</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2536-2051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2022-03, Vol.78 (1), p.376-387 |
issn | 0006-341X 1541-0420 1541-0420 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_464833 |
source | MEDLINE; Wiley Journals; SWEPUB Freely available online; Oxford University Press Journals All Titles (1996-Current) |
subjects | Breast cancer Breast Neoplasms - diagnostic imaging Case-Control Studies Confidence intervals continuous growth model Diagnosis Early Detection of Cancer Female Growth models Growth rate Hormone replacement therapy Humans Lead time lymph node metastases Lymph nodes Lymphatic Metastasis Lymphatic system Lymphoma Mammography Medicin och hälsovetenskap Metastases Metastasis random effect Screening tumor growth Tumors |
title | Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20effects%20models%20of%20lymph%20node%20metastases%20in%20breast%20cancer:%20quantifying%20the%20roles%20of%20covariates%20and%20screening%20using%20a%20continuous%20growth%20model&rft.jtitle=Biometrics&rft.au=Isheden,%20Gabriel&rft.date=2022-03&rft.volume=78&rft.issue=1&rft.spage=376&rft.epage=387&rft.pages=376-387&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13430&rft_dat=%3Cproquest_swepu%3E2645533765%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645533765&rft_id=info:pmid/33501643&rfr_iscdi=true |