Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model

We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2022-03, Vol.78 (1), p.376-387
Hauptverfasser: Isheden, Gabriel, Czene, Kamila, Humphreys, Keith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 1
container_start_page 376
container_title Biometrics
container_volume 78
creator Isheden, Gabriel
Czene, Kamila
Humphreys, Keith
description We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node spread. The model of lymph node spread can be estimated in isolation from measurements of tumor volume and number of affected lymph nodes, giving inference identical to the joint model. Here, we extend our model to include covariate effects. We also derive theoretical results in order to study the role of screening on lymph node metastases at diagnosis. We analyze the association between hormone replacement therapy (HRT) and breast cancer lymph node spread, using data from a case‐control study designed specifically to study the effects of HRT on breast cancer. Using our method, we estimate that women using HRT at time of diagnosis have a 36% lower rate of lymph node spread than nonusers (95% confidence interval [CI] =(8%,58%)). This can be contrasted with the effect of HRT on the tumor growth rate, estimated here to be 15% slower in HRT users (95% CI = (−34%,+7%)). For screen‐detected cancers, we illustrate how lead time can relate to lymph node spread; and using symptomatic cancers, we illustrate the potential consequences of false negative screens in terms of lymph node spread.
doi_str_mv 10.1111/biom.13430
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_464833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645533765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4810-167ec3c250d6fd329264deb36b75857dc3f784bdd9593d18cc496a13d1fc21e73</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhoModq3e-AMk4I0IU5PJx8x4V4sfhUpBFLwLmeRMd-pMsk1mXPZv-Is929lWEDSEJCc873tywiHkOWcnHMebto_jCRdSsAdkxZXkBZMle0hWjDFdCMm_H5EnOV9j2ChWPiZHQijGtRQr8uuLDT6OFLoO3JTpGD0MmcaODrtxs6YBYzrCZDNOyLQPtE2AEXU2OEhv6c1sw9R3uz5c0WkNNMUBbg1c_GlTbyeMMAfNLgGEPTXn_WoRQGGY45zpVYrbab1kf0oedXbI8OywH5NvH95_PftUXFx-PD87vSicrDkruK7ACVcq5nXnRdmUWnpohW4rVavKO9FVtWy9b1QjPK-dk422HI-dKzlU4pgUi2_ewmZuzSb1o007E21vDlc_8ARGalkLgXzzT36Tov8juhNyqeqy5mWD2leLFsGbGfJkxj47GAYbAOs3JZakBebhiL78C72Ocwr4EwYrVEqISiukXi-USzHnBN39czgz-64w-64wt12B8IuD5dyO4O_RuzZAgC_Ath9g9x8r8-788vNi-hst6cWE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645533765</pqid></control><display><type>article</type><title>Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model</title><source>MEDLINE</source><source>Wiley Journals</source><source>SWEPUB Freely available online</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Isheden, Gabriel ; Czene, Kamila ; Humphreys, Keith</creator><creatorcontrib>Isheden, Gabriel ; Czene, Kamila ; Humphreys, Keith</creatorcontrib><description>We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node spread. The model of lymph node spread can be estimated in isolation from measurements of tumor volume and number of affected lymph nodes, giving inference identical to the joint model. Here, we extend our model to include covariate effects. We also derive theoretical results in order to study the role of screening on lymph node metastases at diagnosis. We analyze the association between hormone replacement therapy (HRT) and breast cancer lymph node spread, using data from a case‐control study designed specifically to study the effects of HRT on breast cancer. Using our method, we estimate that women using HRT at time of diagnosis have a 36% lower rate of lymph node spread than nonusers (95% confidence interval [CI] =(8%,58%)). This can be contrasted with the effect of HRT on the tumor growth rate, estimated here to be 15% slower in HRT users (95% CI = (−34%,+7%)). For screen‐detected cancers, we illustrate how lead time can relate to lymph node spread; and using symptomatic cancers, we illustrate the potential consequences of false negative screens in terms of lymph node spread.</description><identifier>ISSN: 0006-341X</identifier><identifier>ISSN: 1541-0420</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13430</identifier><identifier>PMID: 33501643</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Breast cancer ; Breast Neoplasms - diagnostic imaging ; Case-Control Studies ; Confidence intervals ; continuous growth model ; Diagnosis ; Early Detection of Cancer ; Female ; Growth models ; Growth rate ; Hormone replacement therapy ; Humans ; Lead time ; lymph node metastases ; Lymph nodes ; Lymphatic Metastasis ; Lymphatic system ; Lymphoma ; Mammography ; Medicin och hälsovetenskap ; Metastases ; Metastasis ; random effect ; Screening ; tumor growth ; Tumors</subject><ispartof>Biometrics, 2022-03, Vol.78 (1), p.376-387</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of International Biometric Society.</rights><rights>2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4810-167ec3c250d6fd329264deb36b75857dc3f784bdd9593d18cc496a13d1fc21e73</citedby><cites>FETCH-LOGICAL-c4810-167ec3c250d6fd329264deb36b75857dc3f784bdd9593d18cc496a13d1fc21e73</cites><orcidid>0000-0003-2536-2051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13430$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13430$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33501643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145828129$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Isheden, Gabriel</creatorcontrib><creatorcontrib>Czene, Kamila</creatorcontrib><creatorcontrib>Humphreys, Keith</creatorcontrib><title>Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node spread. The model of lymph node spread can be estimated in isolation from measurements of tumor volume and number of affected lymph nodes, giving inference identical to the joint model. Here, we extend our model to include covariate effects. We also derive theoretical results in order to study the role of screening on lymph node metastases at diagnosis. We analyze the association between hormone replacement therapy (HRT) and breast cancer lymph node spread, using data from a case‐control study designed specifically to study the effects of HRT on breast cancer. Using our method, we estimate that women using HRT at time of diagnosis have a 36% lower rate of lymph node spread than nonusers (95% confidence interval [CI] =(8%,58%)). This can be contrasted with the effect of HRT on the tumor growth rate, estimated here to be 15% slower in HRT users (95% CI = (−34%,+7%)). For screen‐detected cancers, we illustrate how lead time can relate to lymph node spread; and using symptomatic cancers, we illustrate the potential consequences of false negative screens in terms of lymph node spread.</description><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Case-Control Studies</subject><subject>Confidence intervals</subject><subject>continuous growth model</subject><subject>Diagnosis</subject><subject>Early Detection of Cancer</subject><subject>Female</subject><subject>Growth models</subject><subject>Growth rate</subject><subject>Hormone replacement therapy</subject><subject>Humans</subject><subject>Lead time</subject><subject>lymph node metastases</subject><subject>Lymph nodes</subject><subject>Lymphatic Metastasis</subject><subject>Lymphatic system</subject><subject>Lymphoma</subject><subject>Mammography</subject><subject>Medicin och hälsovetenskap</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>random effect</subject><subject>Screening</subject><subject>tumor growth</subject><subject>Tumors</subject><issn>0006-341X</issn><issn>1541-0420</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kl1rFDEUhoModq3e-AMk4I0IU5PJx8x4V4sfhUpBFLwLmeRMd-pMsk1mXPZv-Is929lWEDSEJCc873tywiHkOWcnHMebto_jCRdSsAdkxZXkBZMle0hWjDFdCMm_H5EnOV9j2ChWPiZHQijGtRQr8uuLDT6OFLoO3JTpGD0MmcaODrtxs6YBYzrCZDNOyLQPtE2AEXU2OEhv6c1sw9R3uz5c0WkNNMUBbg1c_GlTbyeMMAfNLgGEPTXn_WoRQGGY45zpVYrbab1kf0oedXbI8OywH5NvH95_PftUXFx-PD87vSicrDkruK7ACVcq5nXnRdmUWnpohW4rVavKO9FVtWy9b1QjPK-dk422HI-dKzlU4pgUi2_ewmZuzSb1o007E21vDlc_8ARGalkLgXzzT36Tov8juhNyqeqy5mWD2leLFsGbGfJkxj47GAYbAOs3JZakBebhiL78C72Ocwr4EwYrVEqISiukXi-USzHnBN39czgz-64w-64wt12B8IuD5dyO4O_RuzZAgC_Ath9g9x8r8-788vNi-hst6cWE</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Isheden, Gabriel</creator><creator>Czene, Kamila</creator><creator>Humphreys, Keith</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2536-2051</orcidid></search><sort><creationdate>202203</creationdate><title>Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model</title><author>Isheden, Gabriel ; Czene, Kamila ; Humphreys, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4810-167ec3c250d6fd329264deb36b75857dc3f784bdd9593d18cc496a13d1fc21e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Case-Control Studies</topic><topic>Confidence intervals</topic><topic>continuous growth model</topic><topic>Diagnosis</topic><topic>Early Detection of Cancer</topic><topic>Female</topic><topic>Growth models</topic><topic>Growth rate</topic><topic>Hormone replacement therapy</topic><topic>Humans</topic><topic>Lead time</topic><topic>lymph node metastases</topic><topic>Lymph nodes</topic><topic>Lymphatic Metastasis</topic><topic>Lymphatic system</topic><topic>Lymphoma</topic><topic>Mammography</topic><topic>Medicin och hälsovetenskap</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>random effect</topic><topic>Screening</topic><topic>tumor growth</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isheden, Gabriel</creatorcontrib><creatorcontrib>Czene, Kamila</creatorcontrib><creatorcontrib>Humphreys, Keith</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isheden, Gabriel</au><au>Czene, Kamila</au><au>Humphreys, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2022-03</date><risdate>2022</risdate><volume>78</volume><issue>1</issue><spage>376</spage><epage>387</epage><pages>376-387</pages><issn>0006-341X</issn><issn>1541-0420</issn><eissn>1541-0420</eissn><abstract>We recently described a joint model of breast cancer tumor size and number of affected lymph nodes, which conditions on screening history, mammographic density, and mode of detection, and can be used to infer growth rates, time to symptomatic detection, screening sensitivity, and rates of lymph node spread. The model of lymph node spread can be estimated in isolation from measurements of tumor volume and number of affected lymph nodes, giving inference identical to the joint model. Here, we extend our model to include covariate effects. We also derive theoretical results in order to study the role of screening on lymph node metastases at diagnosis. We analyze the association between hormone replacement therapy (HRT) and breast cancer lymph node spread, using data from a case‐control study designed specifically to study the effects of HRT on breast cancer. Using our method, we estimate that women using HRT at time of diagnosis have a 36% lower rate of lymph node spread than nonusers (95% confidence interval [CI] =(8%,58%)). This can be contrasted with the effect of HRT on the tumor growth rate, estimated here to be 15% slower in HRT users (95% CI = (−34%,+7%)). For screen‐detected cancers, we illustrate how lead time can relate to lymph node spread; and using symptomatic cancers, we illustrate the potential consequences of false negative screens in terms of lymph node spread.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>33501643</pmid><doi>10.1111/biom.13430</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2536-2051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2022-03, Vol.78 (1), p.376-387
issn 0006-341X
1541-0420
1541-0420
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_464833
source MEDLINE; Wiley Journals; SWEPUB Freely available online; Oxford University Press Journals All Titles (1996-Current)
subjects Breast cancer
Breast Neoplasms - diagnostic imaging
Case-Control Studies
Confidence intervals
continuous growth model
Diagnosis
Early Detection of Cancer
Female
Growth models
Growth rate
Hormone replacement therapy
Humans
Lead time
lymph node metastases
Lymph nodes
Lymphatic Metastasis
Lymphatic system
Lymphoma
Mammography
Medicin och hälsovetenskap
Metastases
Metastasis
random effect
Screening
tumor growth
Tumors
title Random effects models of lymph node metastases in breast cancer: quantifying the roles of covariates and screening using a continuous growth model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20effects%20models%20of%20lymph%20node%20metastases%20in%20breast%20cancer:%20quantifying%20the%20roles%20of%20covariates%20and%20screening%20using%20a%20continuous%20growth%20model&rft.jtitle=Biometrics&rft.au=Isheden,%20Gabriel&rft.date=2022-03&rft.volume=78&rft.issue=1&rft.spage=376&rft.epage=387&rft.pages=376-387&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13430&rft_dat=%3Cproquest_swepu%3E2645533765%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645533765&rft_id=info:pmid/33501643&rfr_iscdi=true