BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib

Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2021-05, Vol.35 (5), p.1317-1329
Hauptverfasser: Estupiñán, H. Yesid, Wang, Qing, Berglöf, Anna, Schaafsma, Gerard C. P., Shi, Yuye, Zhou, Litao, Mohammad, Dara K., Yu, Liang, Vihinen, Mauno, Zain, Rula, Smith, C. I. Edvard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1329
container_issue 5
container_start_page 1317
container_title Leukemia
container_volume 35
creator Estupiñán, H. Yesid
Wang, Qing
Berglöf, Anna
Schaafsma, Gerard C. P.
Shi, Yuye
Zhou, Litao
Mohammad, Dara K.
Yu, Liang
Vihinen, Mauno
Zain, Rula
Smith, C. I. Edvard
description Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.
doi_str_mv 10.1038/s41375-021-01123-6
format Article
fullrecord <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_464677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660954821</galeid><sourcerecordid>A660954821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c679t-e845e65ec6d56e1b0138b9a4efebb10496c7391c6b5defe24cbc3a664c9549f33</originalsourceid><addsrcrecordid>eNp9k81u1DAQxyMEoqXwAhyQJSTEgRR_J74glYovsRKXcrZsZ3bXbdZZbKdVeR_eE6e723YRoMiKPfOfnzXjmap6TvAxwax9mzhhjagxJTUmhLJaPqgOCW9kLYQgD6tD3LZNLRXlB9WTlM4xnpzycXXAmKCylfiw-vX-7CtamAwXAGuIKELy3Qjo0kRvsh8CcsPK-gAduvJ5idx1ylCOiLcEpdGm7PO40ZkxQSq2gqknTMomOEB5QD5GuISYvO0B-bD01uchJmSc6Y2NJT54-wb53RaZ0KGfJow7w9Pq0dz0CZ5t_0fV948fzk4_17Nvn76cnsxqJxuVa2i5ACnAyU5IIBYT1lplOMzBWoK5kq5hijhpRVdslDvrmJGSOyW4mjN2VNUbbrqC9Wj1OvqVidd6MF5vTRdlB5pLLpum6Gf_1Pfjuixb1hSA2w4DUZ2WRgnNGaVaiVZpwhg4o4C7Vhbcuw2usFbQOQg5mn6Puu8JfqkXw6VuSWkCRQvg9RYQhx8jpKxXPjnoexNgGJOmvBWCYi6mu17-IT0fxhhKdTUVlHLVCEruVAvTg_ZhPpR73QTVJ1LiUrb2RnX8F1X5Olh5NwSY-2LfC3h1L2AJps_LNPQ3jZT2hXQjdHFIKcL8thgE62kI9GYIdMlf3wyBnlJ7cb-MtyG7ri8Ctn224goLiHe5_wf7G67uFaU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522497521</pqid></control><display><type>article</type><title>BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>SWEPUB Freely available online</source><creator>Estupiñán, H. Yesid ; Wang, Qing ; Berglöf, Anna ; Schaafsma, Gerard C. P. ; Shi, Yuye ; Zhou, Litao ; Mohammad, Dara K. ; Yu, Liang ; Vihinen, Mauno ; Zain, Rula ; Smith, C. I. Edvard</creator><creatorcontrib>Estupiñán, H. Yesid ; Wang, Qing ; Berglöf, Anna ; Schaafsma, Gerard C. P. ; Shi, Yuye ; Zhou, Litao ; Mohammad, Dara K. ; Yu, Liang ; Vihinen, Mauno ; Zain, Rula ; Smith, C. I. Edvard</creatorcontrib><description>Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/s41375-021-01123-6</identifier><identifier>PMID: 33526860</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/109 ; 13/95 ; 692/699/249/1573 ; 692/699/67/1059/2326 ; 692/699/67/1990/283 ; 692/700/565/1436/2185 ; 82 ; 82/29 ; 82/80 ; Adenine - analogs &amp; derivatives ; Adenine - physiology ; Agammaglobulinaemia Tyrosine Kinase - genetics ; Amino acids ; Animals ; Arthritis ; Benzamides - pharmacology ; Binding sites ; Bruton's tyrosine kinase ; Cancer Research ; Cell Line ; Cell Line, Tumor ; Chickens ; Chlorocebus aethiops ; Clinical Medicine ; COS Cells ; Critical Care Medicine ; Cysteine ; Cysteine - genetics ; Drug resistance ; Drug Resistance, Neoplasm - genetics ; Drug therapy ; FDA approval ; Health aspects ; HEK293 Cells ; Hematologi ; Hematology ; Hospitals ; Humans ; Inhibitor drugs ; Inhibitors ; Intensive ; Internal Medicine ; Isoleucine ; Kinases ; Klinisk medicin ; Leukemia ; Lymphoma ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Medicine ; Medicine &amp; Public Health ; Methionine ; Mutation ; Mutation - genetics ; Non-Hodgkin's lymphomas ; Oncology ; Phosphorylation ; Physiological aspects ; Piperidines - pharmacology ; Plasmids ; Protein Kinase Inhibitors - pharmacology ; Protein tyrosine kinase ; Pyrazines - pharmacology ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Residues ; Serine ; Targeted cancer therapy ; Threonine ; Threonine - genetics ; Tyrosine</subject><ispartof>Leukemia, 2021-05, Vol.35 (5), p.1317-1329</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c679t-e845e65ec6d56e1b0138b9a4efebb10496c7391c6b5defe24cbc3a664c9549f33</citedby><cites>FETCH-LOGICAL-c679t-e845e65ec6d56e1b0138b9a4efebb10496c7391c6b5defe24cbc3a664c9549f33</cites><orcidid>0000-0001-8327-846X ; 0000-0002-9388-5957 ; 0000-0001-9201-0991 ; 0000-0001-6351-7486 ; 0000-0003-1907-3392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41375-021-01123-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41375-021-01123-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33526860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/08d0e19d-6a95-4322-9589-133eca9e4c86$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145845827$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Estupiñán, H. Yesid</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Berglöf, Anna</creatorcontrib><creatorcontrib>Schaafsma, Gerard C. P.</creatorcontrib><creatorcontrib>Shi, Yuye</creatorcontrib><creatorcontrib>Zhou, Litao</creatorcontrib><creatorcontrib>Mohammad, Dara K.</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><creatorcontrib>Vihinen, Mauno</creatorcontrib><creatorcontrib>Zain, Rula</creatorcontrib><creatorcontrib>Smith, C. I. Edvard</creatorcontrib><title>BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.</description><subject>13/106</subject><subject>13/109</subject><subject>13/95</subject><subject>692/699/249/1573</subject><subject>692/699/67/1059/2326</subject><subject>692/699/67/1990/283</subject><subject>692/700/565/1436/2185</subject><subject>82</subject><subject>82/29</subject><subject>82/80</subject><subject>Adenine - analogs &amp; derivatives</subject><subject>Adenine - physiology</subject><subject>Agammaglobulinaemia Tyrosine Kinase - genetics</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Arthritis</subject><subject>Benzamides - pharmacology</subject><subject>Binding sites</subject><subject>Bruton's tyrosine kinase</subject><subject>Cancer Research</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Chickens</subject><subject>Chlorocebus aethiops</subject><subject>Clinical Medicine</subject><subject>COS Cells</subject><subject>Critical Care Medicine</subject><subject>Cysteine</subject><subject>Cysteine - genetics</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Drug therapy</subject><subject>FDA approval</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Hematologi</subject><subject>Hematology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Inhibitor drugs</subject><subject>Inhibitors</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Isoleucine</subject><subject>Kinases</subject><subject>Klinisk medicin</subject><subject>Leukemia</subject><subject>Lymphoma</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Methionine</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Non-Hodgkin's lymphomas</subject><subject>Oncology</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Piperidines - pharmacology</subject><subject>Plasmids</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein tyrosine kinase</subject><subject>Pyrazines - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Residues</subject><subject>Serine</subject><subject>Targeted cancer therapy</subject><subject>Threonine</subject><subject>Threonine - genetics</subject><subject>Tyrosine</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><recordid>eNp9k81u1DAQxyMEoqXwAhyQJSTEgRR_J74glYovsRKXcrZsZ3bXbdZZbKdVeR_eE6e723YRoMiKPfOfnzXjmap6TvAxwax9mzhhjagxJTUmhLJaPqgOCW9kLYQgD6tD3LZNLRXlB9WTlM4xnpzycXXAmKCylfiw-vX-7CtamAwXAGuIKELy3Qjo0kRvsh8CcsPK-gAduvJ5idx1ylCOiLcEpdGm7PO40ZkxQSq2gqknTMomOEB5QD5GuISYvO0B-bD01uchJmSc6Y2NJT54-wb53RaZ0KGfJow7w9Pq0dz0CZ5t_0fV948fzk4_17Nvn76cnsxqJxuVa2i5ACnAyU5IIBYT1lplOMzBWoK5kq5hijhpRVdslDvrmJGSOyW4mjN2VNUbbrqC9Wj1OvqVidd6MF5vTRdlB5pLLpum6Gf_1Pfjuixb1hSA2w4DUZ2WRgnNGaVaiVZpwhg4o4C7Vhbcuw2usFbQOQg5mn6Puu8JfqkXw6VuSWkCRQvg9RYQhx8jpKxXPjnoexNgGJOmvBWCYi6mu17-IT0fxhhKdTUVlHLVCEruVAvTg_ZhPpR73QTVJ1LiUrb2RnX8F1X5Olh5NwSY-2LfC3h1L2AJps_LNPQ3jZT2hXQjdHFIKcL8thgE62kI9GYIdMlf3wyBnlJ7cb-MtyG7ri8Ctn224goLiHe5_wf7G67uFaU</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Estupiñán, H. Yesid</creator><creator>Wang, Qing</creator><creator>Berglöf, Anna</creator><creator>Schaafsma, Gerard C. P.</creator><creator>Shi, Yuye</creator><creator>Zhou, Litao</creator><creator>Mohammad, Dara K.</creator><creator>Yu, Liang</creator><creator>Vihinen, Mauno</creator><creator>Zain, Rula</creator><creator>Smith, C. I. Edvard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-8327-846X</orcidid><orcidid>https://orcid.org/0000-0002-9388-5957</orcidid><orcidid>https://orcid.org/0000-0001-9201-0991</orcidid><orcidid>https://orcid.org/0000-0001-6351-7486</orcidid><orcidid>https://orcid.org/0000-0003-1907-3392</orcidid></search><sort><creationdate>20210501</creationdate><title>BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib</title><author>Estupiñán, H. Yesid ; Wang, Qing ; Berglöf, Anna ; Schaafsma, Gerard C. P. ; Shi, Yuye ; Zhou, Litao ; Mohammad, Dara K. ; Yu, Liang ; Vihinen, Mauno ; Zain, Rula ; Smith, C. I. Edvard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c679t-e845e65ec6d56e1b0138b9a4efebb10496c7391c6b5defe24cbc3a664c9549f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/106</topic><topic>13/109</topic><topic>13/95</topic><topic>692/699/249/1573</topic><topic>692/699/67/1059/2326</topic><topic>692/699/67/1990/283</topic><topic>692/700/565/1436/2185</topic><topic>82</topic><topic>82/29</topic><topic>82/80</topic><topic>Adenine - analogs &amp; derivatives</topic><topic>Adenine - physiology</topic><topic>Agammaglobulinaemia Tyrosine Kinase - genetics</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Arthritis</topic><topic>Benzamides - pharmacology</topic><topic>Binding sites</topic><topic>Bruton's tyrosine kinase</topic><topic>Cancer Research</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Chickens</topic><topic>Chlorocebus aethiops</topic><topic>Clinical Medicine</topic><topic>COS Cells</topic><topic>Critical Care Medicine</topic><topic>Cysteine</topic><topic>Cysteine - genetics</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Drug therapy</topic><topic>FDA approval</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Hematologi</topic><topic>Hematology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Inhibitor drugs</topic><topic>Inhibitors</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Isoleucine</topic><topic>Kinases</topic><topic>Klinisk medicin</topic><topic>Leukemia</topic><topic>Lymphoma</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Methionine</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Non-Hodgkin's lymphomas</topic><topic>Oncology</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Piperidines - pharmacology</topic><topic>Plasmids</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein tyrosine kinase</topic><topic>Pyrazines - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Residues</topic><topic>Serine</topic><topic>Targeted cancer therapy</topic><topic>Threonine</topic><topic>Threonine - genetics</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estupiñán, H. Yesid</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Berglöf, Anna</creatorcontrib><creatorcontrib>Schaafsma, Gerard C. P.</creatorcontrib><creatorcontrib>Shi, Yuye</creatorcontrib><creatorcontrib>Zhou, Litao</creatorcontrib><creatorcontrib>Mohammad, Dara K.</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><creatorcontrib>Vihinen, Mauno</creatorcontrib><creatorcontrib>Zain, Rula</creatorcontrib><creatorcontrib>Smith, C. I. Edvard</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estupiñán, H. Yesid</au><au>Wang, Qing</au><au>Berglöf, Anna</au><au>Schaafsma, Gerard C. P.</au><au>Shi, Yuye</au><au>Zhou, Litao</au><au>Mohammad, Dara K.</au><au>Yu, Liang</au><au>Vihinen, Mauno</au><au>Zain, Rula</au><au>Smith, C. I. Edvard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>35</volume><issue>5</issue><spage>1317</spage><epage>1329</epage><pages>1317-1329</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33526860</pmid><doi>10.1038/s41375-021-01123-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8327-846X</orcidid><orcidid>https://orcid.org/0000-0002-9388-5957</orcidid><orcidid>https://orcid.org/0000-0001-9201-0991</orcidid><orcidid>https://orcid.org/0000-0001-6351-7486</orcidid><orcidid>https://orcid.org/0000-0003-1907-3392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2021-05, Vol.35 (5), p.1317-1329
issn 0887-6924
1476-5551
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_464677
source MEDLINE; Springer Nature - Complete Springer Journals; SWEPUB Freely available online
subjects 13/106
13/109
13/95
692/699/249/1573
692/699/67/1059/2326
692/699/67/1990/283
692/700/565/1436/2185
82
82/29
82/80
Adenine - analogs & derivatives
Adenine - physiology
Agammaglobulinaemia Tyrosine Kinase - genetics
Amino acids
Animals
Arthritis
Benzamides - pharmacology
Binding sites
Bruton's tyrosine kinase
Cancer Research
Cell Line
Cell Line, Tumor
Chickens
Chlorocebus aethiops
Clinical Medicine
COS Cells
Critical Care Medicine
Cysteine
Cysteine - genetics
Drug resistance
Drug Resistance, Neoplasm - genetics
Drug therapy
FDA approval
Health aspects
HEK293 Cells
Hematologi
Hematology
Hospitals
Humans
Inhibitor drugs
Inhibitors
Intensive
Internal Medicine
Isoleucine
Kinases
Klinisk medicin
Leukemia
Lymphoma
Medical and Health Sciences
Medicin och hälsovetenskap
Medicine
Medicine & Public Health
Methionine
Mutation
Mutation - genetics
Non-Hodgkin's lymphomas
Oncology
Phosphorylation
Physiological aspects
Piperidines - pharmacology
Plasmids
Protein Kinase Inhibitors - pharmacology
Protein tyrosine kinase
Pyrazines - pharmacology
Pyrazoles - pharmacology
Pyrimidines - pharmacology
Residues
Serine
Targeted cancer therapy
Threonine
Threonine - genetics
Tyrosine
title BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BTK%20gatekeeper%20residue%20variation%20combined%20with%20cysteine%20481%20substitution%20causes%20super-resistance%20to%20irreversible%20inhibitors%20acalabrutinib,%20ibrutinib%20and%20zanubrutinib&rft.jtitle=Leukemia&rft.au=Estupin%CC%83%C3%A1n,%20H.%20Yesid&rft.date=2021-05-01&rft.volume=35&rft.issue=5&rft.spage=1317&rft.epage=1329&rft.pages=1317-1329&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/s41375-021-01123-6&rft_dat=%3Cgale_swepu%3EA660954821%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522497521&rft_id=info:pmid/33526860&rft_galeid=A660954821&rfr_iscdi=true