BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib
Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequent...
Gespeichert in:
Veröffentlicht in: | Leukemia 2021-05, Vol.35 (5), p.1317-1329 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1329 |
---|---|
container_issue | 5 |
container_start_page | 1317 |
container_title | Leukemia |
container_volume | 35 |
creator | Estupiñán, H. Yesid Wang, Qing Berglöf, Anna Schaafsma, Gerard C. P. Shi, Yuye Zhou, Litao Mohammad, Dara K. Yu, Liang Vihinen, Mauno Zain, Rula Smith, C. I. Edvard |
description | Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application. |
doi_str_mv | 10.1038/s41375-021-01123-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_464677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660954821</galeid><sourcerecordid>A660954821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c679t-e845e65ec6d56e1b0138b9a4efebb10496c7391c6b5defe24cbc3a664c9549f33</originalsourceid><addsrcrecordid>eNp9k81u1DAQxyMEoqXwAhyQJSTEgRR_J74glYovsRKXcrZsZ3bXbdZZbKdVeR_eE6e723YRoMiKPfOfnzXjmap6TvAxwax9mzhhjagxJTUmhLJaPqgOCW9kLYQgD6tD3LZNLRXlB9WTlM4xnpzycXXAmKCylfiw-vX-7CtamAwXAGuIKELy3Qjo0kRvsh8CcsPK-gAduvJ5idx1ylCOiLcEpdGm7PO40ZkxQSq2gqknTMomOEB5QD5GuISYvO0B-bD01uchJmSc6Y2NJT54-wb53RaZ0KGfJow7w9Pq0dz0CZ5t_0fV948fzk4_17Nvn76cnsxqJxuVa2i5ACnAyU5IIBYT1lplOMzBWoK5kq5hijhpRVdslDvrmJGSOyW4mjN2VNUbbrqC9Wj1OvqVidd6MF5vTRdlB5pLLpum6Gf_1Pfjuixb1hSA2w4DUZ2WRgnNGaVaiVZpwhg4o4C7Vhbcuw2usFbQOQg5mn6Puu8JfqkXw6VuSWkCRQvg9RYQhx8jpKxXPjnoexNgGJOmvBWCYi6mu17-IT0fxhhKdTUVlHLVCEruVAvTg_ZhPpR73QTVJ1LiUrb2RnX8F1X5Olh5NwSY-2LfC3h1L2AJps_LNPQ3jZT2hXQjdHFIKcL8thgE62kI9GYIdMlf3wyBnlJ7cb-MtyG7ri8Ctn224goLiHe5_wf7G67uFaU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522497521</pqid></control><display><type>article</type><title>BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>SWEPUB Freely available online</source><creator>Estupiñán, H. Yesid ; Wang, Qing ; Berglöf, Anna ; Schaafsma, Gerard C. P. ; Shi, Yuye ; Zhou, Litao ; Mohammad, Dara K. ; Yu, Liang ; Vihinen, Mauno ; Zain, Rula ; Smith, C. I. Edvard</creator><creatorcontrib>Estupiñán, H. Yesid ; Wang, Qing ; Berglöf, Anna ; Schaafsma, Gerard C. P. ; Shi, Yuye ; Zhou, Litao ; Mohammad, Dara K. ; Yu, Liang ; Vihinen, Mauno ; Zain, Rula ; Smith, C. I. Edvard</creatorcontrib><description>Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/s41375-021-01123-6</identifier><identifier>PMID: 33526860</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/109 ; 13/95 ; 692/699/249/1573 ; 692/699/67/1059/2326 ; 692/699/67/1990/283 ; 692/700/565/1436/2185 ; 82 ; 82/29 ; 82/80 ; Adenine - analogs & derivatives ; Adenine - physiology ; Agammaglobulinaemia Tyrosine Kinase - genetics ; Amino acids ; Animals ; Arthritis ; Benzamides - pharmacology ; Binding sites ; Bruton's tyrosine kinase ; Cancer Research ; Cell Line ; Cell Line, Tumor ; Chickens ; Chlorocebus aethiops ; Clinical Medicine ; COS Cells ; Critical Care Medicine ; Cysteine ; Cysteine - genetics ; Drug resistance ; Drug Resistance, Neoplasm - genetics ; Drug therapy ; FDA approval ; Health aspects ; HEK293 Cells ; Hematologi ; Hematology ; Hospitals ; Humans ; Inhibitor drugs ; Inhibitors ; Intensive ; Internal Medicine ; Isoleucine ; Kinases ; Klinisk medicin ; Leukemia ; Lymphoma ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Medicine ; Medicine & Public Health ; Methionine ; Mutation ; Mutation - genetics ; Non-Hodgkin's lymphomas ; Oncology ; Phosphorylation ; Physiological aspects ; Piperidines - pharmacology ; Plasmids ; Protein Kinase Inhibitors - pharmacology ; Protein tyrosine kinase ; Pyrazines - pharmacology ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Residues ; Serine ; Targeted cancer therapy ; Threonine ; Threonine - genetics ; Tyrosine</subject><ispartof>Leukemia, 2021-05, Vol.35 (5), p.1317-1329</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c679t-e845e65ec6d56e1b0138b9a4efebb10496c7391c6b5defe24cbc3a664c9549f33</citedby><cites>FETCH-LOGICAL-c679t-e845e65ec6d56e1b0138b9a4efebb10496c7391c6b5defe24cbc3a664c9549f33</cites><orcidid>0000-0001-8327-846X ; 0000-0002-9388-5957 ; 0000-0001-9201-0991 ; 0000-0001-6351-7486 ; 0000-0003-1907-3392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41375-021-01123-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41375-021-01123-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33526860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/08d0e19d-6a95-4322-9589-133eca9e4c86$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145845827$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Estupiñán, H. Yesid</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Berglöf, Anna</creatorcontrib><creatorcontrib>Schaafsma, Gerard C. P.</creatorcontrib><creatorcontrib>Shi, Yuye</creatorcontrib><creatorcontrib>Zhou, Litao</creatorcontrib><creatorcontrib>Mohammad, Dara K.</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><creatorcontrib>Vihinen, Mauno</creatorcontrib><creatorcontrib>Zain, Rula</creatorcontrib><creatorcontrib>Smith, C. I. Edvard</creatorcontrib><title>BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.</description><subject>13/106</subject><subject>13/109</subject><subject>13/95</subject><subject>692/699/249/1573</subject><subject>692/699/67/1059/2326</subject><subject>692/699/67/1990/283</subject><subject>692/700/565/1436/2185</subject><subject>82</subject><subject>82/29</subject><subject>82/80</subject><subject>Adenine - analogs & derivatives</subject><subject>Adenine - physiology</subject><subject>Agammaglobulinaemia Tyrosine Kinase - genetics</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Arthritis</subject><subject>Benzamides - pharmacology</subject><subject>Binding sites</subject><subject>Bruton's tyrosine kinase</subject><subject>Cancer Research</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Chickens</subject><subject>Chlorocebus aethiops</subject><subject>Clinical Medicine</subject><subject>COS Cells</subject><subject>Critical Care Medicine</subject><subject>Cysteine</subject><subject>Cysteine - genetics</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Drug therapy</subject><subject>FDA approval</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Hematologi</subject><subject>Hematology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Inhibitor drugs</subject><subject>Inhibitors</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Isoleucine</subject><subject>Kinases</subject><subject>Klinisk medicin</subject><subject>Leukemia</subject><subject>Lymphoma</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Methionine</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Non-Hodgkin's lymphomas</subject><subject>Oncology</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Piperidines - pharmacology</subject><subject>Plasmids</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein tyrosine kinase</subject><subject>Pyrazines - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Residues</subject><subject>Serine</subject><subject>Targeted cancer therapy</subject><subject>Threonine</subject><subject>Threonine - genetics</subject><subject>Tyrosine</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><recordid>eNp9k81u1DAQxyMEoqXwAhyQJSTEgRR_J74glYovsRKXcrZsZ3bXbdZZbKdVeR_eE6e723YRoMiKPfOfnzXjmap6TvAxwax9mzhhjagxJTUmhLJaPqgOCW9kLYQgD6tD3LZNLRXlB9WTlM4xnpzycXXAmKCylfiw-vX-7CtamAwXAGuIKELy3Qjo0kRvsh8CcsPK-gAduvJ5idx1ylCOiLcEpdGm7PO40ZkxQSq2gqknTMomOEB5QD5GuISYvO0B-bD01uchJmSc6Y2NJT54-wb53RaZ0KGfJow7w9Pq0dz0CZ5t_0fV948fzk4_17Nvn76cnsxqJxuVa2i5ACnAyU5IIBYT1lplOMzBWoK5kq5hijhpRVdslDvrmJGSOyW4mjN2VNUbbrqC9Wj1OvqVidd6MF5vTRdlB5pLLpum6Gf_1Pfjuixb1hSA2w4DUZ2WRgnNGaVaiVZpwhg4o4C7Vhbcuw2usFbQOQg5mn6Puu8JfqkXw6VuSWkCRQvg9RYQhx8jpKxXPjnoexNgGJOmvBWCYi6mu17-IT0fxhhKdTUVlHLVCEruVAvTg_ZhPpR73QTVJ1LiUrb2RnX8F1X5Olh5NwSY-2LfC3h1L2AJps_LNPQ3jZT2hXQjdHFIKcL8thgE62kI9GYIdMlf3wyBnlJ7cb-MtyG7ri8Ctn224goLiHe5_wf7G67uFaU</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Estupiñán, H. Yesid</creator><creator>Wang, Qing</creator><creator>Berglöf, Anna</creator><creator>Schaafsma, Gerard C. P.</creator><creator>Shi, Yuye</creator><creator>Zhou, Litao</creator><creator>Mohammad, Dara K.</creator><creator>Yu, Liang</creator><creator>Vihinen, Mauno</creator><creator>Zain, Rula</creator><creator>Smith, C. I. Edvard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-8327-846X</orcidid><orcidid>https://orcid.org/0000-0002-9388-5957</orcidid><orcidid>https://orcid.org/0000-0001-9201-0991</orcidid><orcidid>https://orcid.org/0000-0001-6351-7486</orcidid><orcidid>https://orcid.org/0000-0003-1907-3392</orcidid></search><sort><creationdate>20210501</creationdate><title>BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib</title><author>Estupiñán, H. Yesid ; Wang, Qing ; Berglöf, Anna ; Schaafsma, Gerard C. P. ; Shi, Yuye ; Zhou, Litao ; Mohammad, Dara K. ; Yu, Liang ; Vihinen, Mauno ; Zain, Rula ; Smith, C. I. Edvard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c679t-e845e65ec6d56e1b0138b9a4efebb10496c7391c6b5defe24cbc3a664c9549f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/106</topic><topic>13/109</topic><topic>13/95</topic><topic>692/699/249/1573</topic><topic>692/699/67/1059/2326</topic><topic>692/699/67/1990/283</topic><topic>692/700/565/1436/2185</topic><topic>82</topic><topic>82/29</topic><topic>82/80</topic><topic>Adenine - analogs & derivatives</topic><topic>Adenine - physiology</topic><topic>Agammaglobulinaemia Tyrosine Kinase - genetics</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Arthritis</topic><topic>Benzamides - pharmacology</topic><topic>Binding sites</topic><topic>Bruton's tyrosine kinase</topic><topic>Cancer Research</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Chickens</topic><topic>Chlorocebus aethiops</topic><topic>Clinical Medicine</topic><topic>COS Cells</topic><topic>Critical Care Medicine</topic><topic>Cysteine</topic><topic>Cysteine - genetics</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Drug therapy</topic><topic>FDA approval</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Hematologi</topic><topic>Hematology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Inhibitor drugs</topic><topic>Inhibitors</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Isoleucine</topic><topic>Kinases</topic><topic>Klinisk medicin</topic><topic>Leukemia</topic><topic>Lymphoma</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Methionine</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Non-Hodgkin's lymphomas</topic><topic>Oncology</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Piperidines - pharmacology</topic><topic>Plasmids</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein tyrosine kinase</topic><topic>Pyrazines - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Residues</topic><topic>Serine</topic><topic>Targeted cancer therapy</topic><topic>Threonine</topic><topic>Threonine - genetics</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estupiñán, H. Yesid</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Berglöf, Anna</creatorcontrib><creatorcontrib>Schaafsma, Gerard C. P.</creatorcontrib><creatorcontrib>Shi, Yuye</creatorcontrib><creatorcontrib>Zhou, Litao</creatorcontrib><creatorcontrib>Mohammad, Dara K.</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><creatorcontrib>Vihinen, Mauno</creatorcontrib><creatorcontrib>Zain, Rula</creatorcontrib><creatorcontrib>Smith, C. I. Edvard</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estupiñán, H. Yesid</au><au>Wang, Qing</au><au>Berglöf, Anna</au><au>Schaafsma, Gerard C. P.</au><au>Shi, Yuye</au><au>Zhou, Litao</au><au>Mohammad, Dara K.</au><au>Yu, Liang</au><au>Vihinen, Mauno</au><au>Zain, Rula</au><au>Smith, C. I. Edvard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>35</volume><issue>5</issue><spage>1317</spage><epage>1329</epage><pages>1317-1329</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33526860</pmid><doi>10.1038/s41375-021-01123-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8327-846X</orcidid><orcidid>https://orcid.org/0000-0002-9388-5957</orcidid><orcidid>https://orcid.org/0000-0001-9201-0991</orcidid><orcidid>https://orcid.org/0000-0001-6351-7486</orcidid><orcidid>https://orcid.org/0000-0003-1907-3392</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6924 |
ispartof | Leukemia, 2021-05, Vol.35 (5), p.1317-1329 |
issn | 0887-6924 1476-5551 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_464677 |
source | MEDLINE; Springer Nature - Complete Springer Journals; SWEPUB Freely available online |
subjects | 13/106 13/109 13/95 692/699/249/1573 692/699/67/1059/2326 692/699/67/1990/283 692/700/565/1436/2185 82 82/29 82/80 Adenine - analogs & derivatives Adenine - physiology Agammaglobulinaemia Tyrosine Kinase - genetics Amino acids Animals Arthritis Benzamides - pharmacology Binding sites Bruton's tyrosine kinase Cancer Research Cell Line Cell Line, Tumor Chickens Chlorocebus aethiops Clinical Medicine COS Cells Critical Care Medicine Cysteine Cysteine - genetics Drug resistance Drug Resistance, Neoplasm - genetics Drug therapy FDA approval Health aspects HEK293 Cells Hematologi Hematology Hospitals Humans Inhibitor drugs Inhibitors Intensive Internal Medicine Isoleucine Kinases Klinisk medicin Leukemia Lymphoma Medical and Health Sciences Medicin och hälsovetenskap Medicine Medicine & Public Health Methionine Mutation Mutation - genetics Non-Hodgkin's lymphomas Oncology Phosphorylation Physiological aspects Piperidines - pharmacology Plasmids Protein Kinase Inhibitors - pharmacology Protein tyrosine kinase Pyrazines - pharmacology Pyrazoles - pharmacology Pyrimidines - pharmacology Residues Serine Targeted cancer therapy Threonine Threonine - genetics Tyrosine |
title | BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BTK%20gatekeeper%20residue%20variation%20combined%20with%20cysteine%20481%20substitution%20causes%20super-resistance%20to%20irreversible%20inhibitors%20acalabrutinib,%20ibrutinib%20and%20zanubrutinib&rft.jtitle=Leukemia&rft.au=Estupin%CC%83%C3%A1n,%20H.%20Yesid&rft.date=2021-05-01&rft.volume=35&rft.issue=5&rft.spage=1317&rft.epage=1329&rft.pages=1317-1329&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/s41375-021-01123-6&rft_dat=%3Cgale_swepu%3EA660954821%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522497521&rft_id=info:pmid/33526860&rft_galeid=A660954821&rfr_iscdi=true |