A spinal organ of proprioception for integrated motor action feedback
Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of prop...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2021-04, Vol.109 (7), p.1188-1201.e7 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1201.e7 |
---|---|
container_issue | 7 |
container_start_page | 1188 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 109 |
creator | Picton, Laurence D. Bertuzzi, Maria Pallucchi, Irene Fontanel, Pierre Dahlberg, Elin Björnfors, E. Rebecka Iacoviello, Francesco Shearing, Paul R. El Manira, Abdeljabbar |
description | Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network.
[Display omitted]
•A central organ of proprioception exists in the spinal cord•Piezo2-expressing mechanosensitive neurons sense lateral bending of spinal cord•These are inhibitory commissural neurons targeting the locomotor rhythm generator•Intraspinal proprioceptive feedback aligns movements with motor commands
Picton et al. reveal a central organ of proprioception embedded with Piezo2-expressing mechanosensitive neurons in adult zebrafish. These neurons are endowed with a hybrid function as sensory neurons and commissural inhibitory neurons, merging proprioceptive feedback and locomotor rhythm generation into a unified sensorimotor circuit. |
doi_str_mv | 10.1016/j.neuron.2021.01.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_464358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627321000404</els_id><sourcerecordid>2489265040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4dc45a5cab1f59f9375a00ece83caa7980d953cda6dae01b2eda4e392c27bbb13</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaTZp_0Ephl568XZkSZZ1KYSQfkCgl_YsxtI4aLNruZLd0H9fGW9z6KEwMGLm0ejVvIy94bDnwNsPh_1IS4rjvoGG72GN7hnbcTC6ltyY52wHnWnrttHigl3mfADgUhn-kl0IobTWstux2-sqT2HEYxXTPY5VHKopxSmF6GiaQxyrIaYqjDPdJ5zJV6c4lwK6rUfke3QPr9iLAY-ZXp_zFfvx6fb7zZf67tvnrzfXd7WTWs619E4qVA57PigzGKEVApCjTjhEbTrwRgnnsfVIwPuGPEoSpnGN7vueiytWb3PzI01Lb4vOE6bfNmKw59JDOZGVrRSqK_z7jS9_-rlQnu0pZEfHI44Ul2wb2ZmmVSChoO_-QQ9xSWUxhVJglGmFMYWSG-VSzDnR8CSBg11tsQe72WJXWyyssep4ex6-9CfyT5f--lCAjxtAZXu_AiWbXaDRkQ-J3Gx9DP9_4Q-SuqEs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509596399</pqid></control><display><type>article</type><title>A spinal organ of proprioception for integrated motor action feedback</title><source>MEDLINE</source><source>Open Access: Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>SWEPUB Freely available online</source><source>EZB Electronic Journals Library</source><creator>Picton, Laurence D. ; Bertuzzi, Maria ; Pallucchi, Irene ; Fontanel, Pierre ; Dahlberg, Elin ; Björnfors, E. Rebecka ; Iacoviello, Francesco ; Shearing, Paul R. ; El Manira, Abdeljabbar</creator><creatorcontrib>Picton, Laurence D. ; Bertuzzi, Maria ; Pallucchi, Irene ; Fontanel, Pierre ; Dahlberg, Elin ; Björnfors, E. Rebecka ; Iacoviello, Francesco ; Shearing, Paul R. ; El Manira, Abdeljabbar</creatorcontrib><description>Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network.
[Display omitted]
•A central organ of proprioception exists in the spinal cord•Piezo2-expressing mechanosensitive neurons sense lateral bending of spinal cord•These are inhibitory commissural neurons targeting the locomotor rhythm generator•Intraspinal proprioceptive feedback aligns movements with motor commands
Picton et al. reveal a central organ of proprioception embedded with Piezo2-expressing mechanosensitive neurons in adult zebrafish. These neurons are endowed with a hybrid function as sensory neurons and commissural inhibitory neurons, merging proprioceptive feedback and locomotor rhythm generation into a unified sensorimotor circuit.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2021.01.018</identifier><identifier>PMID: 33577748</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Central nervous system ; Central Pattern Generators - physiology ; Feedback ; Feedback, Sensory - physiology ; Female ; Genes ; Interneurons ; Interneurons - physiology ; Ion Channels - physiology ; Locomotion ; Locomotion - physiology ; Male ; Mechanotransduction, Cellular ; motor control ; Motor Neurons - physiology ; Movement - physiology ; Nerve Net - cytology ; Nerve Net - physiology ; Piezo2 ; Population ; Proprioception ; Proprioception - physiology ; RNA - genetics ; Sensory neurons ; Sensory Receptor Cells - physiology ; Spinal cord ; Spinal Cord - diagnostic imaging ; Spinal Cord - physiology ; Tomography, X-Ray Computed ; Vertebrae ; Vertebrates ; Zebrafish - physiology ; Zebrafish Proteins - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2021-04, Vol.109 (7), p.1188-1201.e7</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4dc45a5cab1f59f9375a00ece83caa7980d953cda6dae01b2eda4e392c27bbb13</citedby><cites>FETCH-LOGICAL-c474t-4dc45a5cab1f59f9375a00ece83caa7980d953cda6dae01b2eda4e392c27bbb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627321000404$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33577748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:146385572$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Picton, Laurence D.</creatorcontrib><creatorcontrib>Bertuzzi, Maria</creatorcontrib><creatorcontrib>Pallucchi, Irene</creatorcontrib><creatorcontrib>Fontanel, Pierre</creatorcontrib><creatorcontrib>Dahlberg, Elin</creatorcontrib><creatorcontrib>Björnfors, E. Rebecka</creatorcontrib><creatorcontrib>Iacoviello, Francesco</creatorcontrib><creatorcontrib>Shearing, Paul R.</creatorcontrib><creatorcontrib>El Manira, Abdeljabbar</creatorcontrib><title>A spinal organ of proprioception for integrated motor action feedback</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network.
[Display omitted]
•A central organ of proprioception exists in the spinal cord•Piezo2-expressing mechanosensitive neurons sense lateral bending of spinal cord•These are inhibitory commissural neurons targeting the locomotor rhythm generator•Intraspinal proprioceptive feedback aligns movements with motor commands
Picton et al. reveal a central organ of proprioception embedded with Piezo2-expressing mechanosensitive neurons in adult zebrafish. These neurons are endowed with a hybrid function as sensory neurons and commissural inhibitory neurons, merging proprioceptive feedback and locomotor rhythm generation into a unified sensorimotor circuit.</description><subject>Animals</subject><subject>Central nervous system</subject><subject>Central Pattern Generators - physiology</subject><subject>Feedback</subject><subject>Feedback, Sensory - physiology</subject><subject>Female</subject><subject>Genes</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Ion Channels - physiology</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Mechanotransduction, Cellular</subject><subject>motor control</subject><subject>Motor Neurons - physiology</subject><subject>Movement - physiology</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Piezo2</subject><subject>Population</subject><subject>Proprioception</subject><subject>Proprioception - physiology</subject><subject>RNA - genetics</subject><subject>Sensory neurons</subject><subject>Sensory Receptor Cells - physiology</subject><subject>Spinal cord</subject><subject>Spinal Cord - diagnostic imaging</subject><subject>Spinal Cord - physiology</subject><subject>Tomography, X-Ray Computed</subject><subject>Vertebrae</subject><subject>Vertebrates</subject><subject>Zebrafish - physiology</subject><subject>Zebrafish Proteins - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kU1r3DAQhkVpaTZp_0Ephl568XZkSZZ1KYSQfkCgl_YsxtI4aLNruZLd0H9fGW9z6KEwMGLm0ejVvIy94bDnwNsPh_1IS4rjvoGG72GN7hnbcTC6ltyY52wHnWnrttHigl3mfADgUhn-kl0IobTWstux2-sqT2HEYxXTPY5VHKopxSmF6GiaQxyrIaYqjDPdJ5zJV6c4lwK6rUfke3QPr9iLAY-ZXp_zFfvx6fb7zZf67tvnrzfXd7WTWs619E4qVA57PigzGKEVApCjTjhEbTrwRgnnsfVIwPuGPEoSpnGN7vueiytWb3PzI01Lb4vOE6bfNmKw59JDOZGVrRSqK_z7jS9_-rlQnu0pZEfHI44Ul2wb2ZmmVSChoO_-QQ9xSWUxhVJglGmFMYWSG-VSzDnR8CSBg11tsQe72WJXWyyssep4ex6-9CfyT5f--lCAjxtAZXu_AiWbXaDRkQ-J3Gx9DP9_4Q-SuqEs</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Picton, Laurence D.</creator><creator>Bertuzzi, Maria</creator><creator>Pallucchi, Irene</creator><creator>Fontanel, Pierre</creator><creator>Dahlberg, Elin</creator><creator>Björnfors, E. Rebecka</creator><creator>Iacoviello, Francesco</creator><creator>Shearing, Paul R.</creator><creator>El Manira, Abdeljabbar</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20210407</creationdate><title>A spinal organ of proprioception for integrated motor action feedback</title><author>Picton, Laurence D. ; Bertuzzi, Maria ; Pallucchi, Irene ; Fontanel, Pierre ; Dahlberg, Elin ; Björnfors, E. Rebecka ; Iacoviello, Francesco ; Shearing, Paul R. ; El Manira, Abdeljabbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4dc45a5cab1f59f9375a00ece83caa7980d953cda6dae01b2eda4e392c27bbb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Central nervous system</topic><topic>Central Pattern Generators - physiology</topic><topic>Feedback</topic><topic>Feedback, Sensory - physiology</topic><topic>Female</topic><topic>Genes</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Ion Channels - physiology</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Mechanotransduction, Cellular</topic><topic>motor control</topic><topic>Motor Neurons - physiology</topic><topic>Movement - physiology</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Piezo2</topic><topic>Population</topic><topic>Proprioception</topic><topic>Proprioception - physiology</topic><topic>RNA - genetics</topic><topic>Sensory neurons</topic><topic>Sensory Receptor Cells - physiology</topic><topic>Spinal cord</topic><topic>Spinal Cord - diagnostic imaging</topic><topic>Spinal Cord - physiology</topic><topic>Tomography, X-Ray Computed</topic><topic>Vertebrae</topic><topic>Vertebrates</topic><topic>Zebrafish - physiology</topic><topic>Zebrafish Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picton, Laurence D.</creatorcontrib><creatorcontrib>Bertuzzi, Maria</creatorcontrib><creatorcontrib>Pallucchi, Irene</creatorcontrib><creatorcontrib>Fontanel, Pierre</creatorcontrib><creatorcontrib>Dahlberg, Elin</creatorcontrib><creatorcontrib>Björnfors, E. Rebecka</creatorcontrib><creatorcontrib>Iacoviello, Francesco</creatorcontrib><creatorcontrib>Shearing, Paul R.</creatorcontrib><creatorcontrib>El Manira, Abdeljabbar</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Picton, Laurence D.</au><au>Bertuzzi, Maria</au><au>Pallucchi, Irene</au><au>Fontanel, Pierre</au><au>Dahlberg, Elin</au><au>Björnfors, E. Rebecka</au><au>Iacoviello, Francesco</au><au>Shearing, Paul R.</au><au>El Manira, Abdeljabbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spinal organ of proprioception for integrated motor action feedback</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>109</volume><issue>7</issue><spage>1188</spage><epage>1201.e7</epage><pages>1188-1201.e7</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network.
[Display omitted]
•A central organ of proprioception exists in the spinal cord•Piezo2-expressing mechanosensitive neurons sense lateral bending of spinal cord•These are inhibitory commissural neurons targeting the locomotor rhythm generator•Intraspinal proprioceptive feedback aligns movements with motor commands
Picton et al. reveal a central organ of proprioception embedded with Piezo2-expressing mechanosensitive neurons in adult zebrafish. These neurons are endowed with a hybrid function as sensory neurons and commissural inhibitory neurons, merging proprioceptive feedback and locomotor rhythm generation into a unified sensorimotor circuit.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33577748</pmid><doi>10.1016/j.neuron.2021.01.018</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2021-04, Vol.109 (7), p.1188-1201.e7 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_464358 |
source | MEDLINE; Open Access: Cell Press Free Archives; Elsevier ScienceDirect Journals; SWEPUB Freely available online; EZB Electronic Journals Library |
subjects | Animals Central nervous system Central Pattern Generators - physiology Feedback Feedback, Sensory - physiology Female Genes Interneurons Interneurons - physiology Ion Channels - physiology Locomotion Locomotion - physiology Male Mechanotransduction, Cellular motor control Motor Neurons - physiology Movement - physiology Nerve Net - cytology Nerve Net - physiology Piezo2 Population Proprioception Proprioception - physiology RNA - genetics Sensory neurons Sensory Receptor Cells - physiology Spinal cord Spinal Cord - diagnostic imaging Spinal Cord - physiology Tomography, X-Ray Computed Vertebrae Vertebrates Zebrafish - physiology Zebrafish Proteins - physiology |
title | A spinal organ of proprioception for integrated motor action feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spinal%20organ%20of%20proprioception%20for%20integrated%20motor%20action%20feedback&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Picton,%20Laurence%20D.&rft.date=2021-04-07&rft.volume=109&rft.issue=7&rft.spage=1188&rft.epage=1201.e7&rft.pages=1188-1201.e7&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2021.01.018&rft_dat=%3Cproquest_swepu%3E2489265040%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509596399&rft_id=info:pmid/33577748&rft_els_id=S0896627321000404&rfr_iscdi=true |