Multivariate Generalized Linear Mixed-Effects Models for the Analysis of Clinical Trial–Based Cost-Effectiveness Data
Economic evaluations conducted alongside randomized controlled trials are a popular vehicle for generating high-quality evidence on the incremental cost-effectiveness of competing health care interventions. Typically, in these studies, resource use (and by extension, economic costs) and clinical (or...
Gespeichert in:
Veröffentlicht in: | Medical decision making 2021-08, Vol.41 (6), p.667-684 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 6 |
container_start_page | 667 |
container_title | Medical decision making |
container_volume | 41 |
creator | Achana, Felix Gallacher, Daniel Oppong, Raymond Kim, Sungwook Petrou, Stavros Mason, James Crowther, Michael |
description | Economic evaluations conducted alongside randomized controlled trials are a popular vehicle for generating high-quality evidence on the incremental cost-effectiveness of competing health care interventions. Typically, in these studies, resource use (and by extension, economic costs) and clinical (or preference-based health) outcomes data are collected prospectively for trial participants to estimate the joint distribution of incremental costs and incremental benefits associated with the intervention. In this article, we extend the generalized linear mixed-model framework to enable simultaneous modeling of multiple outcomes of mixed data types, such as those typically encountered in trial-based economic evaluations, taking into account correlation of outcomes due to repeated measurements on the same individual and other clustering effects. We provide new wrapper functions to estimate the models in Stata and R by maximum and restricted maximum quasi-likelihood and compare the performance of the new routines with alternative implementations across a range of statistical programming packages. Empirical applications using observed and simulated data from clinical trials suggest that the new methods produce broadly similar results as compared with Stata’s merlin and gsem commands and a Bayesian implementation in WinBUGS. We highlight that, although these empirical applications primarily focus on trial-based economic evaluations, the new methods presented can be generalized to other health economic investigations characterized by multivariate hierarchical data structures. |
doi_str_mv | 10.1177/0272989X211003880 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_463023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0272989X211003880</sage_id><sourcerecordid>2508889855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-c4691d5a089d96c122e38473587fb4d205b64f096dc89bb2def322b35ff067eb3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhi0EotOBB2CDvGST4kuc2BukMpSCNCM2RerOcuLj1iUTD3Yypaz6DrwhT4JHkxYqBCtbPv_3-XYQekHJEaV1_ZqwmimpzhmlhHApySM0o0KwopL0_DGa7erFLnCADlO6IoSWSpZP0QHnknLF-Qxdr8Zu8FsTvRkAn0IP0XT-O1i89D2YiFf-G9jixDloh4RXwUKXsAsRD5eAj3vT3SSfcHB40fnet6bDZ9nV_bz98dakrFmENEy432Z9SvidGcwz9MSZLsHzaZyjz-9PzhYfiuWn04-L42XRClYNRVtWilphiFRWVS1lDLgsay5k7ZrSMiKaqnREVbaVqmmYBccZa7hwjlQ1NHyOir03XcNmbPQm-rWJNzoYr6elL3kGuqw4YTzn1T_zmxjsb-gOpJksSZ0_YI7e7NkcWINtoR_yYz5UPKj0_lJfhK2WTAlViSx4NQli-DpCGvTapxa6zvQQxqSZIFJKJcUuSvfRNoaUIrj7bSjRu-bQfzVHZl7-eb574q4bcuBoury5AH0Vxpj_N_3H-AvWsMa8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508889855</pqid></control><display><type>article</type><title>Multivariate Generalized Linear Mixed-Effects Models for the Analysis of Clinical Trial–Based Cost-Effectiveness Data</title><source>SWEPUB Freely available online</source><source>SAGE Complete A-Z List</source><creator>Achana, Felix ; Gallacher, Daniel ; Oppong, Raymond ; Kim, Sungwook ; Petrou, Stavros ; Mason, James ; Crowther, Michael</creator><creatorcontrib>Achana, Felix ; Gallacher, Daniel ; Oppong, Raymond ; Kim, Sungwook ; Petrou, Stavros ; Mason, James ; Crowther, Michael</creatorcontrib><description>Economic evaluations conducted alongside randomized controlled trials are a popular vehicle for generating high-quality evidence on the incremental cost-effectiveness of competing health care interventions. Typically, in these studies, resource use (and by extension, economic costs) and clinical (or preference-based health) outcomes data are collected prospectively for trial participants to estimate the joint distribution of incremental costs and incremental benefits associated with the intervention. In this article, we extend the generalized linear mixed-model framework to enable simultaneous modeling of multiple outcomes of mixed data types, such as those typically encountered in trial-based economic evaluations, taking into account correlation of outcomes due to repeated measurements on the same individual and other clustering effects. We provide new wrapper functions to estimate the models in Stata and R by maximum and restricted maximum quasi-likelihood and compare the performance of the new routines with alternative implementations across a range of statistical programming packages. Empirical applications using observed and simulated data from clinical trials suggest that the new methods produce broadly similar results as compared with Stata’s merlin and gsem commands and a Bayesian implementation in WinBUGS. We highlight that, although these empirical applications primarily focus on trial-based economic evaluations, the new methods presented can be generalized to other health economic investigations characterized by multivariate hierarchical data structures.</description><identifier>ISSN: 0272-989X</identifier><identifier>ISSN: 1552-681X</identifier><identifier>EISSN: 1552-681X</identifier><identifier>DOI: 10.1177/0272989X211003880</identifier><identifier>PMID: 33813933</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Medicin och hälsovetenskap ; Original s</subject><ispartof>Medical decision making, 2021-08, Vol.41 (6), p.667-684</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021 2021 Society for Medical Decision Making</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-c4691d5a089d96c122e38473587fb4d205b64f096dc89bb2def322b35ff067eb3</citedby><cites>FETCH-LOGICAL-c526t-c4691d5a089d96c122e38473587fb4d205b64f096dc89bb2def322b35ff067eb3</cites><orcidid>0000-0002-0815-4616 ; 0000-0003-0506-9384 ; 0000-0002-8727-9125 ; 0000-0002-1254-5038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0272989X211003880$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0272989X211003880$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,885,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33813933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:146340700$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Achana, Felix</creatorcontrib><creatorcontrib>Gallacher, Daniel</creatorcontrib><creatorcontrib>Oppong, Raymond</creatorcontrib><creatorcontrib>Kim, Sungwook</creatorcontrib><creatorcontrib>Petrou, Stavros</creatorcontrib><creatorcontrib>Mason, James</creatorcontrib><creatorcontrib>Crowther, Michael</creatorcontrib><title>Multivariate Generalized Linear Mixed-Effects Models for the Analysis of Clinical Trial–Based Cost-Effectiveness Data</title><title>Medical decision making</title><addtitle>Med Decis Making</addtitle><description>Economic evaluations conducted alongside randomized controlled trials are a popular vehicle for generating high-quality evidence on the incremental cost-effectiveness of competing health care interventions. Typically, in these studies, resource use (and by extension, economic costs) and clinical (or preference-based health) outcomes data are collected prospectively for trial participants to estimate the joint distribution of incremental costs and incremental benefits associated with the intervention. In this article, we extend the generalized linear mixed-model framework to enable simultaneous modeling of multiple outcomes of mixed data types, such as those typically encountered in trial-based economic evaluations, taking into account correlation of outcomes due to repeated measurements on the same individual and other clustering effects. We provide new wrapper functions to estimate the models in Stata and R by maximum and restricted maximum quasi-likelihood and compare the performance of the new routines with alternative implementations across a range of statistical programming packages. Empirical applications using observed and simulated data from clinical trials suggest that the new methods produce broadly similar results as compared with Stata’s merlin and gsem commands and a Bayesian implementation in WinBUGS. We highlight that, although these empirical applications primarily focus on trial-based economic evaluations, the new methods presented can be generalized to other health economic investigations characterized by multivariate hierarchical data structures.</description><subject>Medicin och hälsovetenskap</subject><subject>Original s</subject><issn>0272-989X</issn><issn>1552-681X</issn><issn>1552-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>D8T</sourceid><recordid>eNp9kstu1DAUhi0EotOBB2CDvGST4kuc2BukMpSCNCM2RerOcuLj1iUTD3Yypaz6DrwhT4JHkxYqBCtbPv_3-XYQekHJEaV1_ZqwmimpzhmlhHApySM0o0KwopL0_DGa7erFLnCADlO6IoSWSpZP0QHnknLF-Qxdr8Zu8FsTvRkAn0IP0XT-O1i89D2YiFf-G9jixDloh4RXwUKXsAsRD5eAj3vT3SSfcHB40fnet6bDZ9nV_bz98dakrFmENEy432Z9SvidGcwz9MSZLsHzaZyjz-9PzhYfiuWn04-L42XRClYNRVtWilphiFRWVS1lDLgsay5k7ZrSMiKaqnREVbaVqmmYBccZa7hwjlQ1NHyOir03XcNmbPQm-rWJNzoYr6elL3kGuqw4YTzn1T_zmxjsb-gOpJksSZ0_YI7e7NkcWINtoR_yYz5UPKj0_lJfhK2WTAlViSx4NQli-DpCGvTapxa6zvQQxqSZIFJKJcUuSvfRNoaUIrj7bSjRu-bQfzVHZl7-eb574q4bcuBoury5AH0Vxpj_N_3H-AvWsMa8</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Achana, Felix</creator><creator>Gallacher, Daniel</creator><creator>Oppong, Raymond</creator><creator>Kim, Sungwook</creator><creator>Petrou, Stavros</creator><creator>Mason, James</creator><creator>Crowther, Michael</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-0815-4616</orcidid><orcidid>https://orcid.org/0000-0003-0506-9384</orcidid><orcidid>https://orcid.org/0000-0002-8727-9125</orcidid><orcidid>https://orcid.org/0000-0002-1254-5038</orcidid></search><sort><creationdate>20210801</creationdate><title>Multivariate Generalized Linear Mixed-Effects Models for the Analysis of Clinical Trial–Based Cost-Effectiveness Data</title><author>Achana, Felix ; Gallacher, Daniel ; Oppong, Raymond ; Kim, Sungwook ; Petrou, Stavros ; Mason, James ; Crowther, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-c4691d5a089d96c122e38473587fb4d205b64f096dc89bb2def322b35ff067eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Medicin och hälsovetenskap</topic><topic>Original s</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achana, Felix</creatorcontrib><creatorcontrib>Gallacher, Daniel</creatorcontrib><creatorcontrib>Oppong, Raymond</creatorcontrib><creatorcontrib>Kim, Sungwook</creatorcontrib><creatorcontrib>Petrou, Stavros</creatorcontrib><creatorcontrib>Mason, James</creatorcontrib><creatorcontrib>Crowther, Michael</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Medical decision making</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achana, Felix</au><au>Gallacher, Daniel</au><au>Oppong, Raymond</au><au>Kim, Sungwook</au><au>Petrou, Stavros</au><au>Mason, James</au><au>Crowther, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Generalized Linear Mixed-Effects Models for the Analysis of Clinical Trial–Based Cost-Effectiveness Data</atitle><jtitle>Medical decision making</jtitle><addtitle>Med Decis Making</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>41</volume><issue>6</issue><spage>667</spage><epage>684</epage><pages>667-684</pages><issn>0272-989X</issn><issn>1552-681X</issn><eissn>1552-681X</eissn><abstract>Economic evaluations conducted alongside randomized controlled trials are a popular vehicle for generating high-quality evidence on the incremental cost-effectiveness of competing health care interventions. Typically, in these studies, resource use (and by extension, economic costs) and clinical (or preference-based health) outcomes data are collected prospectively for trial participants to estimate the joint distribution of incremental costs and incremental benefits associated with the intervention. In this article, we extend the generalized linear mixed-model framework to enable simultaneous modeling of multiple outcomes of mixed data types, such as those typically encountered in trial-based economic evaluations, taking into account correlation of outcomes due to repeated measurements on the same individual and other clustering effects. We provide new wrapper functions to estimate the models in Stata and R by maximum and restricted maximum quasi-likelihood and compare the performance of the new routines with alternative implementations across a range of statistical programming packages. Empirical applications using observed and simulated data from clinical trials suggest that the new methods produce broadly similar results as compared with Stata’s merlin and gsem commands and a Bayesian implementation in WinBUGS. We highlight that, although these empirical applications primarily focus on trial-based economic evaluations, the new methods presented can be generalized to other health economic investigations characterized by multivariate hierarchical data structures.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>33813933</pmid><doi>10.1177/0272989X211003880</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0815-4616</orcidid><orcidid>https://orcid.org/0000-0003-0506-9384</orcidid><orcidid>https://orcid.org/0000-0002-8727-9125</orcidid><orcidid>https://orcid.org/0000-0002-1254-5038</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-989X |
ispartof | Medical decision making, 2021-08, Vol.41 (6), p.667-684 |
issn | 0272-989X 1552-681X 1552-681X |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_463023 |
source | SWEPUB Freely available online; SAGE Complete A-Z List |
subjects | Medicin och hälsovetenskap Original s |
title | Multivariate Generalized Linear Mixed-Effects Models for the Analysis of Clinical Trial–Based Cost-Effectiveness Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Generalized%20Linear%20Mixed-Effects%20Models%20for%20the%20Analysis%20of%20Clinical%20Trial%E2%80%93Based%20Cost-Effectiveness%20Data&rft.jtitle=Medical%20decision%20making&rft.au=Achana,%20Felix&rft.date=2021-08-01&rft.volume=41&rft.issue=6&rft.spage=667&rft.epage=684&rft.pages=667-684&rft.issn=0272-989X&rft.eissn=1552-681X&rft_id=info:doi/10.1177/0272989X211003880&rft_dat=%3Cproquest_swepu%3E2508889855%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508889855&rft_id=info:pmid/33813933&rft_sage_id=10.1177_0272989X211003880&rfr_iscdi=true |