Isoform-level quantification for single-cell RNA sequencing

Abstract Motivation RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2022-02, Vol.38 (5), p.1287-1294
Hauptverfasser: Pan, Lu, Dinh, Huy Q, Pawitan, Yudi, Vu, Trung Nghia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1294
container_issue 5
container_start_page 1287
container_title Bioinformatics (Oxford, England)
container_volume 38
creator Pan, Lu
Dinh, Huy Q
Pawitan, Yudi
Vu, Trung Nghia
description Abstract Motivation RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3ʹ 10× Genomics is currently performed at the gene level. Results We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods. Availability and implementation Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btab807
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_457142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab807</oup_id><sourcerecordid>2607302418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-bb615e91cc1cfd0b15b81602a8d2c613dc5b42dfa8d44c57627e969d528fff253</originalsourceid><addsrcrecordid>eNqdklFPHCEUhUlTU-22f2Ezj75M5TLAQJo02RirJqYmRp8JMLBFZ4fdYcam_17WXbfug4npE3Dv-Q7kcBGaAv4GWFYnJsTQ-dgv9BBsOjGDNgLXH9ARVLwuqQD4uNvj6hB9TukeY8ww45_QYUUFp4LKI_T9MsW1Tdm6R9cWq1F3Q_DBZtvYFblTpNDNW1da17bFza9ZkdxqdJ3N1S_owOs2ua_bdYLufp7dnl6UV9fnl6ezq9IySYfSGA7MSbAWrG-wAWYEcEy0aIjlUDWWGUoan8-UWlZzUjvJZcOI8N4TVk1QufFNf9xyNGrZh4Xu_6qog9qWHvLOKcpqoCTr5Zv6ZR-bf9ALSF4C-Q8WqARJ8TP7Y8NmwcI11nVDr9t9i71OF36reXxUQhBe5W-aoOOtQR9zyGlQi5DWwevOxTEpwnFdYUJBZCnfSG0fU-qd310DWK0nRO1PiNpOSAanrx-5w14lABtBHJfvNX0Cj8LS-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607302418</pqid></control><display><type>article</type><title>Isoform-level quantification for single-cell RNA sequencing</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pan, Lu ; Dinh, Huy Q ; Pawitan, Yudi ; Vu, Trung Nghia</creator><contributor>Mathelier, Anthony</contributor><creatorcontrib>Pan, Lu ; Dinh, Huy Q ; Pawitan, Yudi ; Vu, Trung Nghia ; Mathelier, Anthony</creatorcontrib><description>Abstract Motivation RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3ʹ 10× Genomics is currently performed at the gene level. Results We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods. Availability and implementation Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab807</identifier><identifier>PMID: 34864849</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Gene Expression Profiling - methods ; Medicin och hälsovetenskap ; Original Papers ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; RNA ; RNA, Messenger - genetics ; Sequence Analysis, RNA - methods ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2022-02, Vol.38 (5), p.1287-1294</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-bb615e91cc1cfd0b15b81602a8d2c613dc5b42dfa8d44c57627e969d528fff253</citedby><cites>FETCH-LOGICAL-c594t-bb615e91cc1cfd0b15b81602a8d2c613dc5b42dfa8d44c57627e969d528fff253</cites><orcidid>0000-0001-7945-5750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826380/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826380/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34864849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:149194049$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:234864849$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Mathelier, Anthony</contributor><creatorcontrib>Pan, Lu</creatorcontrib><creatorcontrib>Dinh, Huy Q</creatorcontrib><creatorcontrib>Pawitan, Yudi</creatorcontrib><creatorcontrib>Vu, Trung Nghia</creatorcontrib><title>Isoform-level quantification for single-cell RNA sequencing</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3ʹ 10× Genomics is currently performed at the gene level. Results We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods. Availability and implementation Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Gene Expression Profiling - methods</subject><subject>Medicin och hälsovetenskap</subject><subject>Original Papers</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqdklFPHCEUhUlTU-22f2Ezj75M5TLAQJo02RirJqYmRp8JMLBFZ4fdYcam_17WXbfug4npE3Dv-Q7kcBGaAv4GWFYnJsTQ-dgv9BBsOjGDNgLXH9ARVLwuqQD4uNvj6hB9TukeY8ww45_QYUUFp4LKI_T9MsW1Tdm6R9cWq1F3Q_DBZtvYFblTpNDNW1da17bFza9ZkdxqdJ3N1S_owOs2ua_bdYLufp7dnl6UV9fnl6ezq9IySYfSGA7MSbAWrG-wAWYEcEy0aIjlUDWWGUoan8-UWlZzUjvJZcOI8N4TVk1QufFNf9xyNGrZh4Xu_6qog9qWHvLOKcpqoCTr5Zv6ZR-bf9ALSF4C-Q8WqARJ8TP7Y8NmwcI11nVDr9t9i71OF36reXxUQhBe5W-aoOOtQR9zyGlQi5DWwevOxTEpwnFdYUJBZCnfSG0fU-qd310DWK0nRO1PiNpOSAanrx-5w14lABtBHJfvNX0Cj8LS-w</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Pan, Lu</creator><creator>Dinh, Huy Q</creator><creator>Pawitan, Yudi</creator><creator>Vu, Trung Nghia</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7945-5750</orcidid></search><sort><creationdate>20220207</creationdate><title>Isoform-level quantification for single-cell RNA sequencing</title><author>Pan, Lu ; Dinh, Huy Q ; Pawitan, Yudi ; Vu, Trung Nghia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-bb615e91cc1cfd0b15b81602a8d2c613dc5b42dfa8d44c57627e969d528fff253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Gene Expression Profiling - methods</topic><topic>Medicin och hälsovetenskap</topic><topic>Original Papers</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Lu</creatorcontrib><creatorcontrib>Dinh, Huy Q</creatorcontrib><creatorcontrib>Pawitan, Yudi</creatorcontrib><creatorcontrib>Vu, Trung Nghia</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Lu</au><au>Dinh, Huy Q</au><au>Pawitan, Yudi</au><au>Vu, Trung Nghia</au><au>Mathelier, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoform-level quantification for single-cell RNA sequencing</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2022-02-07</date><risdate>2022</risdate><volume>38</volume><issue>5</issue><spage>1287</spage><epage>1294</epage><pages>1287-1294</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3ʹ 10× Genomics is currently performed at the gene level. Results We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods. Availability and implementation Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34864849</pmid><doi>10.1093/bioinformatics/btab807</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7945-5750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2022-02, Vol.38 (5), p.1287-1294
issn 1367-4803
1367-4811
1367-4811
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_457142
source MEDLINE; SWEPUB Freely available online; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Gene Expression Profiling - methods
Medicin och hälsovetenskap
Original Papers
Protein Isoforms - genetics
Protein Isoforms - metabolism
RNA
RNA, Messenger - genetics
Sequence Analysis, RNA - methods
Software
title Isoform-level quantification for single-cell RNA sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoform-level%20quantification%20for%20single-cell%20RNA%20sequencing&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Pan,%20Lu&rft.date=2022-02-07&rft.volume=38&rft.issue=5&rft.spage=1287&rft.epage=1294&rft.pages=1287-1294&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btab807&rft_dat=%3Cproquest_swepu%3E2607302418%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607302418&rft_id=info:pmid/34864849&rft_oup_id=10.1093/bioinformatics/btab807&rfr_iscdi=true