Isoform-level quantification for single-cell RNA sequencing
Abstract Motivation RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-th...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2022-02, Vol.38 (5), p.1287-1294 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1294 |
---|---|
container_issue | 5 |
container_start_page | 1287 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 38 |
creator | Pan, Lu Dinh, Huy Q Pawitan, Yudi Vu, Trung Nghia |
description | Abstract
Motivation
RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3ʹ 10× Genomics is currently performed at the gene level.
Results
We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods.
Availability and implementation
Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btab807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_457142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab807</oup_id><sourcerecordid>2607302418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-bb615e91cc1cfd0b15b81602a8d2c613dc5b42dfa8d44c57627e969d528fff253</originalsourceid><addsrcrecordid>eNqdklFPHCEUhUlTU-22f2Ezj75M5TLAQJo02RirJqYmRp8JMLBFZ4fdYcam_17WXbfug4npE3Dv-Q7kcBGaAv4GWFYnJsTQ-dgv9BBsOjGDNgLXH9ARVLwuqQD4uNvj6hB9TukeY8ww45_QYUUFp4LKI_T9MsW1Tdm6R9cWq1F3Q_DBZtvYFblTpNDNW1da17bFza9ZkdxqdJ3N1S_owOs2ua_bdYLufp7dnl6UV9fnl6ezq9IySYfSGA7MSbAWrG-wAWYEcEy0aIjlUDWWGUoan8-UWlZzUjvJZcOI8N4TVk1QufFNf9xyNGrZh4Xu_6qog9qWHvLOKcpqoCTr5Zv6ZR-bf9ALSF4C-Q8WqARJ8TP7Y8NmwcI11nVDr9t9i71OF36reXxUQhBe5W-aoOOtQR9zyGlQi5DWwevOxTEpwnFdYUJBZCnfSG0fU-qd310DWK0nRO1PiNpOSAanrx-5w14lABtBHJfvNX0Cj8LS-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607302418</pqid></control><display><type>article</type><title>Isoform-level quantification for single-cell RNA sequencing</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pan, Lu ; Dinh, Huy Q ; Pawitan, Yudi ; Vu, Trung Nghia</creator><contributor>Mathelier, Anthony</contributor><creatorcontrib>Pan, Lu ; Dinh, Huy Q ; Pawitan, Yudi ; Vu, Trung Nghia ; Mathelier, Anthony</creatorcontrib><description>Abstract
Motivation
RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3ʹ 10× Genomics is currently performed at the gene level.
Results
We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods.
Availability and implementation
Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab807</identifier><identifier>PMID: 34864849</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Gene Expression Profiling - methods ; Medicin och hälsovetenskap ; Original Papers ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; RNA ; RNA, Messenger - genetics ; Sequence Analysis, RNA - methods ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2022-02, Vol.38 (5), p.1287-1294</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-bb615e91cc1cfd0b15b81602a8d2c613dc5b42dfa8d44c57627e969d528fff253</citedby><cites>FETCH-LOGICAL-c594t-bb615e91cc1cfd0b15b81602a8d2c613dc5b42dfa8d44c57627e969d528fff253</cites><orcidid>0000-0001-7945-5750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826380/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826380/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34864849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:149194049$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:234864849$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Mathelier, Anthony</contributor><creatorcontrib>Pan, Lu</creatorcontrib><creatorcontrib>Dinh, Huy Q</creatorcontrib><creatorcontrib>Pawitan, Yudi</creatorcontrib><creatorcontrib>Vu, Trung Nghia</creatorcontrib><title>Isoform-level quantification for single-cell RNA sequencing</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3ʹ 10× Genomics is currently performed at the gene level.
Results
We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods.
Availability and implementation
Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Gene Expression Profiling - methods</subject><subject>Medicin och hälsovetenskap</subject><subject>Original Papers</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqdklFPHCEUhUlTU-22f2Ezj75M5TLAQJo02RirJqYmRp8JMLBFZ4fdYcam_17WXbfug4npE3Dv-Q7kcBGaAv4GWFYnJsTQ-dgv9BBsOjGDNgLXH9ARVLwuqQD4uNvj6hB9TukeY8ww45_QYUUFp4LKI_T9MsW1Tdm6R9cWq1F3Q_DBZtvYFblTpNDNW1da17bFza9ZkdxqdJ3N1S_owOs2ua_bdYLufp7dnl6UV9fnl6ezq9IySYfSGA7MSbAWrG-wAWYEcEy0aIjlUDWWGUoan8-UWlZzUjvJZcOI8N4TVk1QufFNf9xyNGrZh4Xu_6qog9qWHvLOKcpqoCTr5Zv6ZR-bf9ALSF4C-Q8WqARJ8TP7Y8NmwcI11nVDr9t9i71OF36reXxUQhBe5W-aoOOtQR9zyGlQi5DWwevOxTEpwnFdYUJBZCnfSG0fU-qd310DWK0nRO1PiNpOSAanrx-5w14lABtBHJfvNX0Cj8LS-w</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Pan, Lu</creator><creator>Dinh, Huy Q</creator><creator>Pawitan, Yudi</creator><creator>Vu, Trung Nghia</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7945-5750</orcidid></search><sort><creationdate>20220207</creationdate><title>Isoform-level quantification for single-cell RNA sequencing</title><author>Pan, Lu ; Dinh, Huy Q ; Pawitan, Yudi ; Vu, Trung Nghia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-bb615e91cc1cfd0b15b81602a8d2c613dc5b42dfa8d44c57627e969d528fff253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Gene Expression Profiling - methods</topic><topic>Medicin och hälsovetenskap</topic><topic>Original Papers</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Lu</creatorcontrib><creatorcontrib>Dinh, Huy Q</creatorcontrib><creatorcontrib>Pawitan, Yudi</creatorcontrib><creatorcontrib>Vu, Trung Nghia</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Lu</au><au>Dinh, Huy Q</au><au>Pawitan, Yudi</au><au>Vu, Trung Nghia</au><au>Mathelier, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoform-level quantification for single-cell RNA sequencing</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2022-02-07</date><risdate>2022</risdate><volume>38</volume><issue>5</issue><spage>1287</spage><epage>1294</epage><pages>1287-1294</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3ʹ bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3ʹ 10× Genomics is currently performed at the gene level.
Results
We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods.
Availability and implementation
Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34864849</pmid><doi>10.1093/bioinformatics/btab807</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7945-5750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2022-02, Vol.38 (5), p.1287-1294 |
issn | 1367-4803 1367-4811 1367-4811 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_457142 |
source | MEDLINE; SWEPUB Freely available online; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Gene Expression Profiling - methods Medicin och hälsovetenskap Original Papers Protein Isoforms - genetics Protein Isoforms - metabolism RNA RNA, Messenger - genetics Sequence Analysis, RNA - methods Software |
title | Isoform-level quantification for single-cell RNA sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoform-level%20quantification%20for%20single-cell%20RNA%20sequencing&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Pan,%20Lu&rft.date=2022-02-07&rft.volume=38&rft.issue=5&rft.spage=1287&rft.epage=1294&rft.pages=1287-1294&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btab807&rft_dat=%3Cproquest_swepu%3E2607302418%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607302418&rft_id=info:pmid/34864849&rft_oup_id=10.1093/bioinformatics/btab807&rfr_iscdi=true |