Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability

Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2022-08, Vol.29 (8), p.1639-1653
Hauptverfasser: Merchut-Maya, Joanna Maria, Bartek, Jiri, Bartkova, Jirina, Galanos, Panagiotis, Pantalone, Mattia Russel, Lee, MyungHee, Cui, Huanhuan L., Shilling, Patrick J., Brøchner, Christian Beltoft, Broholm, Helle, Maya-Mendoza, Apolinar, Söderberg-Naucler, Cecilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1653
container_issue 8
container_start_page 1639
container_title Cell death and differentiation
container_volume 29
creator Merchut-Maya, Joanna Maria
Bartek, Jiri
Bartkova, Jirina
Galanos, Panagiotis
Pantalone, Mattia Russel
Lee, MyungHee
Cui, Huanhuan L.
Shilling, Patrick J.
Brøchner, Christian Beltoft
Broholm, Helle
Maya-Mendoza, Apolinar
Söderberg-Naucler, Cecilia
Bartek, Jiri
description Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.
doi_str_mv 10.1038/s41418-022-00953-w
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_455320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697205406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-714691d1cfd0009457cb11b49229d5f2390ab1d71c28a9dbfb22cf7be57806513</originalsourceid><addsrcrecordid>eNp9kV9PFDEUxRujEUS_gA9mEl-t9H-3LyYEUExIfAFfm06nM3SZbdd2hs1-ey_ugvCgL21z-zvn3vYg9J6Sz5TwxXEVVNAFJoxhQozkePMCHVKhFZaC8Jdw5pJgQ4Q-QG9qXRJClDbqNTrgkhqQ6kPUXcwrlxq_nfIqDG7Md7HMtbmJS-dvYc91aupUQq0NLOucamj6OYwxDVBYj9G7Keb0wLjUNUNI4NXEVCfXxjFO27foVe_GGt7t9yN0_fX86vQCX_749v305BJ7KcyENRXK0I76voNRjZDat5S2wjBmOtkzbohraaepZwtnurZvGfO9boPUC6Ik5UcI73zrJqzn1q5LXLmytdlFuy_dwilYISVnBPhP_-TP4s8Tm8tg62wZYUppwL_scGBXofMhTcWNz1TPb1K8sUO-s4YLBQ8Cg497g5J_zaFOdpnnkuBLLFNGMwK5KaDYjvIl11pC_9iBEnsfvN0FbyF4-yd4uwHRh6ezPUoekgaA798KV2kI5W_v_9j-BrffvX0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697205406</pqid></control><display><type>article</type><title>Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><creator>Merchut-Maya, Joanna Maria ; Bartek, Jiri ; Bartkova, Jirina ; Galanos, Panagiotis ; Pantalone, Mattia Russel ; Lee, MyungHee ; Cui, Huanhuan L. ; Shilling, Patrick J. ; Brøchner, Christian Beltoft ; Broholm, Helle ; Maya-Mendoza, Apolinar ; Söderberg-Naucler, Cecilia ; Bartek, Jiri</creator><creatorcontrib>Merchut-Maya, Joanna Maria ; Bartek, Jiri ; Bartkova, Jirina ; Galanos, Panagiotis ; Pantalone, Mattia Russel ; Lee, MyungHee ; Cui, Huanhuan L. ; Shilling, Patrick J. ; Brøchner, Christian Beltoft ; Broholm, Helle ; Maya-Mendoza, Apolinar ; Söderberg-Naucler, Cecilia ; Bartek, Jiri</creatorcontrib><description>Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.</description><identifier>ISSN: 1350-9047</identifier><identifier>ISSN: 1476-5403</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-022-00953-w</identifier><identifier>PMID: 35194187</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 13/31 ; 13/51 ; 14/19 ; 14/63 ; 38 ; 38/22 ; 42 ; 631/337 ; 631/67/1922 ; Apoptosis ; Binding sites ; Biochemistry ; Biomedical and Life Sciences ; Brain cancer ; Carcinogenesis - genetics ; Cell Biology ; Cell Cycle Analysis ; Chemotherapy ; Cytomegalovirus ; Cytomegalovirus - genetics ; Cytomegalovirus - metabolism ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Damage ; Genomes ; Genomic Instability ; Genotoxicity ; Humans ; Infections ; Life Sciences ; Promoter Regions, Genetic ; Replication ; Stem Cells ; Tumorigenesis ; Viral infections ; Virus Replication</subject><ispartof>Cell death and differentiation, 2022-08, Vol.29 (8), p.1639-1653</ispartof><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2022</rights><rights>2022. The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare.</rights><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-714691d1cfd0009457cb11b49229d5f2390ab1d71c28a9dbfb22cf7be57806513</citedby><cites>FETCH-LOGICAL-c549t-714691d1cfd0009457cb11b49229d5f2390ab1d71c28a9dbfb22cf7be57806513</cites><orcidid>0000-0003-1403-4685 ; 0000-0003-2013-7525 ; 0000-0002-2706-4683 ; 0000-0001-7452-9896 ; 0000-0001-8955-3610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346009/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346009/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,550,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35194187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-202667$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:148895147$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Merchut-Maya, Joanna Maria</creatorcontrib><creatorcontrib>Bartek, Jiri</creatorcontrib><creatorcontrib>Bartkova, Jirina</creatorcontrib><creatorcontrib>Galanos, Panagiotis</creatorcontrib><creatorcontrib>Pantalone, Mattia Russel</creatorcontrib><creatorcontrib>Lee, MyungHee</creatorcontrib><creatorcontrib>Cui, Huanhuan L.</creatorcontrib><creatorcontrib>Shilling, Patrick J.</creatorcontrib><creatorcontrib>Brøchner, Christian Beltoft</creatorcontrib><creatorcontrib>Broholm, Helle</creatorcontrib><creatorcontrib>Maya-Mendoza, Apolinar</creatorcontrib><creatorcontrib>Söderberg-Naucler, Cecilia</creatorcontrib><creatorcontrib>Bartek, Jiri</creatorcontrib><title>Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.</description><subject>13</subject><subject>13/106</subject><subject>13/31</subject><subject>13/51</subject><subject>14/19</subject><subject>14/63</subject><subject>38</subject><subject>38/22</subject><subject>42</subject><subject>631/337</subject><subject>631/67/1922</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brain cancer</subject><subject>Carcinogenesis - genetics</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Chemotherapy</subject><subject>Cytomegalovirus</subject><subject>Cytomegalovirus - genetics</subject><subject>Cytomegalovirus - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Damage</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Genotoxicity</subject><subject>Humans</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Promoter Regions, Genetic</subject><subject>Replication</subject><subject>Stem Cells</subject><subject>Tumorigenesis</subject><subject>Viral infections</subject><subject>Virus Replication</subject><issn>1350-9047</issn><issn>1476-5403</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><recordid>eNp9kV9PFDEUxRujEUS_gA9mEl-t9H-3LyYEUExIfAFfm06nM3SZbdd2hs1-ey_ugvCgL21z-zvn3vYg9J6Sz5TwxXEVVNAFJoxhQozkePMCHVKhFZaC8Jdw5pJgQ4Q-QG9qXRJClDbqNTrgkhqQ6kPUXcwrlxq_nfIqDG7Md7HMtbmJS-dvYc91aupUQq0NLOucamj6OYwxDVBYj9G7Keb0wLjUNUNI4NXEVCfXxjFO27foVe_GGt7t9yN0_fX86vQCX_749v305BJ7KcyENRXK0I76voNRjZDat5S2wjBmOtkzbohraaepZwtnurZvGfO9boPUC6Ik5UcI73zrJqzn1q5LXLmytdlFuy_dwilYISVnBPhP_-TP4s8Tm8tg62wZYUppwL_scGBXofMhTcWNz1TPb1K8sUO-s4YLBQ8Cg497g5J_zaFOdpnnkuBLLFNGMwK5KaDYjvIl11pC_9iBEnsfvN0FbyF4-yd4uwHRh6ezPUoekgaA798KV2kI5W_v_9j-BrffvX0</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Merchut-Maya, Joanna Maria</creator><creator>Bartek, Jiri</creator><creator>Bartkova, Jirina</creator><creator>Galanos, Panagiotis</creator><creator>Pantalone, Mattia Russel</creator><creator>Lee, MyungHee</creator><creator>Cui, Huanhuan L.</creator><creator>Shilling, Patrick J.</creator><creator>Brøchner, Christian Beltoft</creator><creator>Broholm, Helle</creator><creator>Maya-Mendoza, Apolinar</creator><creator>Söderberg-Naucler, Cecilia</creator><creator>Bartek, Jiri</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-1403-4685</orcidid><orcidid>https://orcid.org/0000-0003-2013-7525</orcidid><orcidid>https://orcid.org/0000-0002-2706-4683</orcidid><orcidid>https://orcid.org/0000-0001-7452-9896</orcidid><orcidid>https://orcid.org/0000-0001-8955-3610</orcidid></search><sort><creationdate>20220801</creationdate><title>Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability</title><author>Merchut-Maya, Joanna Maria ; Bartek, Jiri ; Bartkova, Jirina ; Galanos, Panagiotis ; Pantalone, Mattia Russel ; Lee, MyungHee ; Cui, Huanhuan L. ; Shilling, Patrick J. ; Brøchner, Christian Beltoft ; Broholm, Helle ; Maya-Mendoza, Apolinar ; Söderberg-Naucler, Cecilia ; Bartek, Jiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-714691d1cfd0009457cb11b49229d5f2390ab1d71c28a9dbfb22cf7be57806513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13</topic><topic>13/106</topic><topic>13/31</topic><topic>13/51</topic><topic>14/19</topic><topic>14/63</topic><topic>38</topic><topic>38/22</topic><topic>42</topic><topic>631/337</topic><topic>631/67/1922</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brain cancer</topic><topic>Carcinogenesis - genetics</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Chemotherapy</topic><topic>Cytomegalovirus</topic><topic>Cytomegalovirus - genetics</topic><topic>Cytomegalovirus - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Damage</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Genotoxicity</topic><topic>Humans</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Promoter Regions, Genetic</topic><topic>Replication</topic><topic>Stem Cells</topic><topic>Tumorigenesis</topic><topic>Viral infections</topic><topic>Virus Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merchut-Maya, Joanna Maria</creatorcontrib><creatorcontrib>Bartek, Jiri</creatorcontrib><creatorcontrib>Bartkova, Jirina</creatorcontrib><creatorcontrib>Galanos, Panagiotis</creatorcontrib><creatorcontrib>Pantalone, Mattia Russel</creatorcontrib><creatorcontrib>Lee, MyungHee</creatorcontrib><creatorcontrib>Cui, Huanhuan L.</creatorcontrib><creatorcontrib>Shilling, Patrick J.</creatorcontrib><creatorcontrib>Brøchner, Christian Beltoft</creatorcontrib><creatorcontrib>Broholm, Helle</creatorcontrib><creatorcontrib>Maya-Mendoza, Apolinar</creatorcontrib><creatorcontrib>Söderberg-Naucler, Cecilia</creatorcontrib><creatorcontrib>Bartek, Jiri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merchut-Maya, Joanna Maria</au><au>Bartek, Jiri</au><au>Bartkova, Jirina</au><au>Galanos, Panagiotis</au><au>Pantalone, Mattia Russel</au><au>Lee, MyungHee</au><au>Cui, Huanhuan L.</au><au>Shilling, Patrick J.</au><au>Brøchner, Christian Beltoft</au><au>Broholm, Helle</au><au>Maya-Mendoza, Apolinar</au><au>Söderberg-Naucler, Cecilia</au><au>Bartek, Jiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>29</volume><issue>8</issue><spage>1639</spage><epage>1653</epage><pages>1639-1653</pages><issn>1350-9047</issn><issn>1476-5403</issn><eissn>1476-5403</eissn><abstract>Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35194187</pmid><doi>10.1038/s41418-022-00953-w</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1403-4685</orcidid><orcidid>https://orcid.org/0000-0003-2013-7525</orcidid><orcidid>https://orcid.org/0000-0002-2706-4683</orcidid><orcidid>https://orcid.org/0000-0001-7452-9896</orcidid><orcidid>https://orcid.org/0000-0001-8955-3610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2022-08, Vol.29 (8), p.1639-1653
issn 1350-9047
1476-5403
1476-5403
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_455320
source MEDLINE; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online
subjects 13
13/106
13/31
13/51
14/19
14/63
38
38/22
42
631/337
631/67/1922
Apoptosis
Binding sites
Biochemistry
Biomedical and Life Sciences
Brain cancer
Carcinogenesis - genetics
Cell Biology
Cell Cycle Analysis
Chemotherapy
Cytomegalovirus
Cytomegalovirus - genetics
Cytomegalovirus - metabolism
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA Damage
Genomes
Genomic Instability
Genotoxicity
Humans
Infections
Life Sciences
Promoter Regions, Genetic
Replication
Stem Cells
Tumorigenesis
Viral infections
Virus Replication
title Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20cytomegalovirus%20hijacks%20host%20stress%20response%20fueling%20replication%20stress%20and%20genome%20instability&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Merchut-Maya,%20Joanna%20Maria&rft.date=2022-08-01&rft.volume=29&rft.issue=8&rft.spage=1639&rft.epage=1653&rft.pages=1639-1653&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-022-00953-w&rft_dat=%3Cproquest_swepu%3E2697205406%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697205406&rft_id=info:pmid/35194187&rfr_iscdi=true