A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines
Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs...
Gespeichert in:
Veröffentlicht in: | Statistical Methods in Medical Research 2024-08, Vol.33 (8), p.1461-1472 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1472 |
---|---|
container_issue | 8 |
container_start_page | 1461 |
container_title | Statistical Methods in Medical Research |
container_volume | 33 |
creator | Hamza, Tasnim Furukawa, Toshi A Orsini, Nicola Cipriani, Andrea Iglesias, Cynthia P Salanti, Georgia |
description | Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs dosage plays in the results. This leads to more heterogeneity in the network. In this paper, we present a suite of network meta-analysis models that incorporate the dose–effect relationship using restricted cubic splines. We extend existing models into a dose–effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect dose–effect network meta-analysis model. We apply our models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are more efficacious than placebo after a certain dose. Also, we identify the dose level at which each antidepressant's effect exceeds that of placebo and estimate the dose beyond which the effect of antidepressants no longer increases. When covariates were introduced to the model, we find that studies with small sample size tend to exaggerate antidepressants efficacy for several of the drugs. Our dose–effect network meta-analysis model with restricted cubic splines provides a flexible approach to modelling the dose–effect relationship in multiple interventions. Decision-makers can use our model to inform treatment choice. |
doi_str_mv | 10.1177/09622802211070256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_455280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09622802211070256</sage_id><sourcerecordid>2632799318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-762430a565d44712fe525aa5d273fce4a022badb01b73fff8dd1cc6708d6e9943</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EokPhAdggS2y6SfEt9mSFqoqbVIkNrC3HPpm6TexgOx11xzv0DXkSPJqhUBArn8t3fp8LQi8pOaVUqTekk4ytCWOUEkVYKx-hFRVKNYRz8RitdvlmBxyhZzlfEVIp0T1FR7xl1ZFshcIZdjHDj-93MAxgCw5QtjFd4wmKaUww4232GU_RwYi3vlxiM8-jt6b4GLAP2ITiHcwJcq5mxkv2YYOrW5K3BRy2S-8tzrUoQH6OngxmzPDi8B6jr-_ffTn_2Fx8_vDp_OyisUKy0ijJBCemla0TQlE2QMtaY1rHFB8sCFNn7o3rCe1rYBjWzlFrpSJrJ6HrBD9GzV43b2Feej0nP5l0q6Px-hC6rhZo0bZ1QZV_u-drZgJnIZRkxgdlDzPBX-pNvNGU1oaV6qrCyUEhxW9LHV9PPlsYRxMgLlkzyZnqOk7XFX39F3oVl1RXnTWnlBNZb7ij6J6yKeacYLjvhhK9O7_-5_y15tWfY9xX_Lp3BU4PezEb-P3t_xV_AoZRu1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113061478</pqid></control><display><type>article</type><title>A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Sage Journals</source><creator>Hamza, Tasnim ; Furukawa, Toshi A ; Orsini, Nicola ; Cipriani, Andrea ; Iglesias, Cynthia P ; Salanti, Georgia</creator><creatorcontrib>Hamza, Tasnim ; Furukawa, Toshi A ; Orsini, Nicola ; Cipriani, Andrea ; Iglesias, Cynthia P ; Salanti, Georgia</creatorcontrib><description>Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs dosage plays in the results. This leads to more heterogeneity in the network. In this paper, we present a suite of network meta-analysis models that incorporate the dose–effect relationship using restricted cubic splines. We extend existing models into a dose–effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect dose–effect network meta-analysis model. We apply our models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are more efficacious than placebo after a certain dose. Also, we identify the dose level at which each antidepressant's effect exceeds that of placebo and estimate the dose beyond which the effect of antidepressants no longer increases. When covariates were introduced to the model, we find that studies with small sample size tend to exaggerate antidepressants efficacy for several of the drugs. Our dose–effect network meta-analysis model with restricted cubic splines provides a flexible approach to modelling the dose–effect relationship in multiple interventions. Decision-makers can use our model to inform treatment choice.</description><identifier>ISSN: 0962-2802</identifier><identifier>ISSN: 1477-0334</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/09622802211070256</identifier><identifier>PMID: 35200062</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aggregate data ; Analysis ; Antidepressants ; Antidepressive Agents - administration & dosage ; Antidepressive Agents - therapeutic use ; Decision makers ; Depression - drug therapy ; Dosage ; Dose-Response Relationship, Drug ; Drug dosages ; Effectiveness ; Efficacy ; Heterogeneity ; Humans ; Intervention ; Meta-analysis ; Meta-Analysis as Topic ; Models, Statistical ; Network Meta-Analysis ; Placebo effect ; Regression analysis ; Review</subject><ispartof>Statistical Methods in Medical Research, 2024-08, Vol.33 (8), p.1461-1472</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022 2022 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-762430a565d44712fe525aa5d273fce4a022badb01b73fff8dd1cc6708d6e9943</citedby><cites>FETCH-LOGICAL-c462t-762430a565d44712fe525aa5d273fce4a022badb01b73fff8dd1cc6708d6e9943</cites><orcidid>0000-0002-3830-8508 ; 0000-0002-4700-6990 ; 0000-0003-2159-3776 ; 0000-0002-3426-0930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09622802211070256$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09622802211070256$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,313,314,551,777,781,789,882,21800,27903,27905,27906,30980,43602,43603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35200062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:149133693$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamza, Tasnim</creatorcontrib><creatorcontrib>Furukawa, Toshi A</creatorcontrib><creatorcontrib>Orsini, Nicola</creatorcontrib><creatorcontrib>Cipriani, Andrea</creatorcontrib><creatorcontrib>Iglesias, Cynthia P</creatorcontrib><creatorcontrib>Salanti, Georgia</creatorcontrib><title>A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines</title><title>Statistical Methods in Medical Research</title><addtitle>Stat Methods Med Res</addtitle><description>Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs dosage plays in the results. This leads to more heterogeneity in the network. In this paper, we present a suite of network meta-analysis models that incorporate the dose–effect relationship using restricted cubic splines. We extend existing models into a dose–effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect dose–effect network meta-analysis model. We apply our models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are more efficacious than placebo after a certain dose. Also, we identify the dose level at which each antidepressant's effect exceeds that of placebo and estimate the dose beyond which the effect of antidepressants no longer increases. When covariates were introduced to the model, we find that studies with small sample size tend to exaggerate antidepressants efficacy for several of the drugs. Our dose–effect network meta-analysis model with restricted cubic splines provides a flexible approach to modelling the dose–effect relationship in multiple interventions. Decision-makers can use our model to inform treatment choice.</description><subject>Aggregate data</subject><subject>Analysis</subject><subject>Antidepressants</subject><subject>Antidepressive Agents - administration & dosage</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>Decision makers</subject><subject>Depression - drug therapy</subject><subject>Dosage</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug dosages</subject><subject>Effectiveness</subject><subject>Efficacy</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Intervention</subject><subject>Meta-analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Models, Statistical</subject><subject>Network Meta-Analysis</subject><subject>Placebo effect</subject><subject>Regression analysis</subject><subject>Review</subject><issn>0962-2802</issn><issn>1477-0334</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>D8T</sourceid><recordid>eNp1kctu1DAUhi0EokPhAdggS2y6SfEt9mSFqoqbVIkNrC3HPpm6TexgOx11xzv0DXkSPJqhUBArn8t3fp8LQi8pOaVUqTekk4ytCWOUEkVYKx-hFRVKNYRz8RitdvlmBxyhZzlfEVIp0T1FR7xl1ZFshcIZdjHDj-93MAxgCw5QtjFd4wmKaUww4232GU_RwYi3vlxiM8-jt6b4GLAP2ITiHcwJcq5mxkv2YYOrW5K3BRy2S-8tzrUoQH6OngxmzPDi8B6jr-_ffTn_2Fx8_vDp_OyisUKy0ijJBCemla0TQlE2QMtaY1rHFB8sCFNn7o3rCe1rYBjWzlFrpSJrJ6HrBD9GzV43b2Feej0nP5l0q6Px-hC6rhZo0bZ1QZV_u-drZgJnIZRkxgdlDzPBX-pNvNGU1oaV6qrCyUEhxW9LHV9PPlsYRxMgLlkzyZnqOk7XFX39F3oVl1RXnTWnlBNZb7ij6J6yKeacYLjvhhK9O7_-5_y15tWfY9xX_Lp3BU4PezEb-P3t_xV_AoZRu1c</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Hamza, Tasnim</creator><creator>Furukawa, Toshi A</creator><creator>Orsini, Nicola</creator><creator>Cipriani, Andrea</creator><creator>Iglesias, Cynthia P</creator><creator>Salanti, Georgia</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-3830-8508</orcidid><orcidid>https://orcid.org/0000-0002-4700-6990</orcidid><orcidid>https://orcid.org/0000-0003-2159-3776</orcidid><orcidid>https://orcid.org/0000-0002-3426-0930</orcidid></search><sort><creationdate>20240801</creationdate><title>A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines</title><author>Hamza, Tasnim ; Furukawa, Toshi A ; Orsini, Nicola ; Cipriani, Andrea ; Iglesias, Cynthia P ; Salanti, Georgia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-762430a565d44712fe525aa5d273fce4a022badb01b73fff8dd1cc6708d6e9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregate data</topic><topic>Analysis</topic><topic>Antidepressants</topic><topic>Antidepressive Agents - administration & dosage</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>Decision makers</topic><topic>Depression - drug therapy</topic><topic>Dosage</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug dosages</topic><topic>Effectiveness</topic><topic>Efficacy</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Intervention</topic><topic>Meta-analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Models, Statistical</topic><topic>Network Meta-Analysis</topic><topic>Placebo effect</topic><topic>Regression analysis</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamza, Tasnim</creatorcontrib><creatorcontrib>Furukawa, Toshi A</creatorcontrib><creatorcontrib>Orsini, Nicola</creatorcontrib><creatorcontrib>Cipriani, Andrea</creatorcontrib><creatorcontrib>Iglesias, Cynthia P</creatorcontrib><creatorcontrib>Salanti, Georgia</creatorcontrib><collection>SAGE Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Statistical Methods in Medical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamza, Tasnim</au><au>Furukawa, Toshi A</au><au>Orsini, Nicola</au><au>Cipriani, Andrea</au><au>Iglesias, Cynthia P</au><au>Salanti, Georgia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines</atitle><jtitle>Statistical Methods in Medical Research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>33</volume><issue>8</issue><spage>1461</spage><epage>1472</epage><pages>1461-1472</pages><issn>0962-2802</issn><issn>1477-0334</issn><eissn>1477-0334</eissn><abstract>Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs dosage plays in the results. This leads to more heterogeneity in the network. In this paper, we present a suite of network meta-analysis models that incorporate the dose–effect relationship using restricted cubic splines. We extend existing models into a dose–effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect dose–effect network meta-analysis model. We apply our models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are more efficacious than placebo after a certain dose. Also, we identify the dose level at which each antidepressant's effect exceeds that of placebo and estimate the dose beyond which the effect of antidepressants no longer increases. When covariates were introduced to the model, we find that studies with small sample size tend to exaggerate antidepressants efficacy for several of the drugs. Our dose–effect network meta-analysis model with restricted cubic splines provides a flexible approach to modelling the dose–effect relationship in multiple interventions. Decision-makers can use our model to inform treatment choice.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>35200062</pmid><doi>10.1177/09622802211070256</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3830-8508</orcidid><orcidid>https://orcid.org/0000-0002-4700-6990</orcidid><orcidid>https://orcid.org/0000-0003-2159-3776</orcidid><orcidid>https://orcid.org/0000-0002-3426-0930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical Methods in Medical Research, 2024-08, Vol.33 (8), p.1461-1472 |
issn | 0962-2802 1477-0334 1477-0334 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_455280 |
source | Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; SWEPUB Freely available online; Sage Journals |
subjects | Aggregate data Analysis Antidepressants Antidepressive Agents - administration & dosage Antidepressive Agents - therapeutic use Decision makers Depression - drug therapy Dosage Dose-Response Relationship, Drug Drug dosages Effectiveness Efficacy Heterogeneity Humans Intervention Meta-analysis Meta-Analysis as Topic Models, Statistical Network Meta-Analysis Placebo effect Regression analysis Review |
title | A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dose%E2%80%93effect%20network%20meta-analysis%20model%20with%20application%20in%20antidepressants%20using%20restricted%20cubic%20splines&rft.jtitle=Statistical%20Methods%20in%20Medical%20Research&rft.au=Hamza,%20Tasnim&rft.date=2024-08-01&rft.volume=33&rft.issue=8&rft.spage=1461&rft.epage=1472&rft.pages=1461-1472&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/09622802211070256&rft_dat=%3Cproquest_swepu%3E2632799318%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113061478&rft_id=info:pmid/35200062&rft_sage_id=10.1177_09622802211070256&rfr_iscdi=true |