A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines

Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical Methods in Medical Research 2024-08, Vol.33 (8), p.1461-1472
Hauptverfasser: Hamza, Tasnim, Furukawa, Toshi A, Orsini, Nicola, Cipriani, Andrea, Iglesias, Cynthia P, Salanti, Georgia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1472
container_issue 8
container_start_page 1461
container_title Statistical Methods in Medical Research
container_volume 33
creator Hamza, Tasnim
Furukawa, Toshi A
Orsini, Nicola
Cipriani, Andrea
Iglesias, Cynthia P
Salanti, Georgia
description Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs dosage plays in the results. This leads to more heterogeneity in the network. In this paper, we present a suite of network meta-analysis models that incorporate the dose–effect relationship using restricted cubic splines. We extend existing models into a dose–effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect dose–effect network meta-analysis model. We apply our models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are more efficacious than placebo after a certain dose. Also, we identify the dose level at which each antidepressant's effect exceeds that of placebo and estimate the dose beyond which the effect of antidepressants no longer increases. When covariates were introduced to the model, we find that studies with small sample size tend to exaggerate antidepressants efficacy for several of the drugs. Our dose–effect network meta-analysis model with restricted cubic splines provides a flexible approach to modelling the dose–effect relationship in multiple interventions. Decision-makers can use our model to inform treatment choice.
doi_str_mv 10.1177/09622802211070256
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_455280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09622802211070256</sage_id><sourcerecordid>2632799318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-762430a565d44712fe525aa5d273fce4a022badb01b73fff8dd1cc6708d6e9943</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EokPhAdggS2y6SfEt9mSFqoqbVIkNrC3HPpm6TexgOx11xzv0DXkSPJqhUBArn8t3fp8LQi8pOaVUqTekk4ytCWOUEkVYKx-hFRVKNYRz8RitdvlmBxyhZzlfEVIp0T1FR7xl1ZFshcIZdjHDj-93MAxgCw5QtjFd4wmKaUww4232GU_RwYi3vlxiM8-jt6b4GLAP2ITiHcwJcq5mxkv2YYOrW5K3BRy2S-8tzrUoQH6OngxmzPDi8B6jr-_ffTn_2Fx8_vDp_OyisUKy0ijJBCemla0TQlE2QMtaY1rHFB8sCFNn7o3rCe1rYBjWzlFrpSJrJ6HrBD9GzV43b2Feej0nP5l0q6Px-hC6rhZo0bZ1QZV_u-drZgJnIZRkxgdlDzPBX-pNvNGU1oaV6qrCyUEhxW9LHV9PPlsYRxMgLlkzyZnqOk7XFX39F3oVl1RXnTWnlBNZb7ij6J6yKeacYLjvhhK9O7_-5_y15tWfY9xX_Lp3BU4PezEb-P3t_xV_AoZRu1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113061478</pqid></control><display><type>article</type><title>A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Sage Journals</source><creator>Hamza, Tasnim ; Furukawa, Toshi A ; Orsini, Nicola ; Cipriani, Andrea ; Iglesias, Cynthia P ; Salanti, Georgia</creator><creatorcontrib>Hamza, Tasnim ; Furukawa, Toshi A ; Orsini, Nicola ; Cipriani, Andrea ; Iglesias, Cynthia P ; Salanti, Georgia</creatorcontrib><description>Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs dosage plays in the results. This leads to more heterogeneity in the network. In this paper, we present a suite of network meta-analysis models that incorporate the dose–effect relationship using restricted cubic splines. We extend existing models into a dose–effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect dose–effect network meta-analysis model. We apply our models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are more efficacious than placebo after a certain dose. Also, we identify the dose level at which each antidepressant's effect exceeds that of placebo and estimate the dose beyond which the effect of antidepressants no longer increases. When covariates were introduced to the model, we find that studies with small sample size tend to exaggerate antidepressants efficacy for several of the drugs. Our dose–effect network meta-analysis model with restricted cubic splines provides a flexible approach to modelling the dose–effect relationship in multiple interventions. Decision-makers can use our model to inform treatment choice.</description><identifier>ISSN: 0962-2802</identifier><identifier>ISSN: 1477-0334</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/09622802211070256</identifier><identifier>PMID: 35200062</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aggregate data ; Analysis ; Antidepressants ; Antidepressive Agents - administration &amp; dosage ; Antidepressive Agents - therapeutic use ; Decision makers ; Depression - drug therapy ; Dosage ; Dose-Response Relationship, Drug ; Drug dosages ; Effectiveness ; Efficacy ; Heterogeneity ; Humans ; Intervention ; Meta-analysis ; Meta-Analysis as Topic ; Models, Statistical ; Network Meta-Analysis ; Placebo effect ; Regression analysis ; Review</subject><ispartof>Statistical Methods in Medical Research, 2024-08, Vol.33 (8), p.1461-1472</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022 2022 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-762430a565d44712fe525aa5d273fce4a022badb01b73fff8dd1cc6708d6e9943</citedby><cites>FETCH-LOGICAL-c462t-762430a565d44712fe525aa5d273fce4a022badb01b73fff8dd1cc6708d6e9943</cites><orcidid>0000-0002-3830-8508 ; 0000-0002-4700-6990 ; 0000-0003-2159-3776 ; 0000-0002-3426-0930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09622802211070256$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09622802211070256$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,313,314,551,777,781,789,882,21800,27903,27905,27906,30980,43602,43603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35200062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:149133693$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamza, Tasnim</creatorcontrib><creatorcontrib>Furukawa, Toshi A</creatorcontrib><creatorcontrib>Orsini, Nicola</creatorcontrib><creatorcontrib>Cipriani, Andrea</creatorcontrib><creatorcontrib>Iglesias, Cynthia P</creatorcontrib><creatorcontrib>Salanti, Georgia</creatorcontrib><title>A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines</title><title>Statistical Methods in Medical Research</title><addtitle>Stat Methods Med Res</addtitle><description>Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs dosage plays in the results. This leads to more heterogeneity in the network. In this paper, we present a suite of network meta-analysis models that incorporate the dose–effect relationship using restricted cubic splines. We extend existing models into a dose–effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect dose–effect network meta-analysis model. We apply our models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are more efficacious than placebo after a certain dose. Also, we identify the dose level at which each antidepressant's effect exceeds that of placebo and estimate the dose beyond which the effect of antidepressants no longer increases. When covariates were introduced to the model, we find that studies with small sample size tend to exaggerate antidepressants efficacy for several of the drugs. Our dose–effect network meta-analysis model with restricted cubic splines provides a flexible approach to modelling the dose–effect relationship in multiple interventions. Decision-makers can use our model to inform treatment choice.</description><subject>Aggregate data</subject><subject>Analysis</subject><subject>Antidepressants</subject><subject>Antidepressive Agents - administration &amp; dosage</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>Decision makers</subject><subject>Depression - drug therapy</subject><subject>Dosage</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug dosages</subject><subject>Effectiveness</subject><subject>Efficacy</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Intervention</subject><subject>Meta-analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Models, Statistical</subject><subject>Network Meta-Analysis</subject><subject>Placebo effect</subject><subject>Regression analysis</subject><subject>Review</subject><issn>0962-2802</issn><issn>1477-0334</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>D8T</sourceid><recordid>eNp1kctu1DAUhi0EokPhAdggS2y6SfEt9mSFqoqbVIkNrC3HPpm6TexgOx11xzv0DXkSPJqhUBArn8t3fp8LQi8pOaVUqTekk4ytCWOUEkVYKx-hFRVKNYRz8RitdvlmBxyhZzlfEVIp0T1FR7xl1ZFshcIZdjHDj-93MAxgCw5QtjFd4wmKaUww4232GU_RwYi3vlxiM8-jt6b4GLAP2ITiHcwJcq5mxkv2YYOrW5K3BRy2S-8tzrUoQH6OngxmzPDi8B6jr-_ffTn_2Fx8_vDp_OyisUKy0ijJBCemla0TQlE2QMtaY1rHFB8sCFNn7o3rCe1rYBjWzlFrpSJrJ6HrBD9GzV43b2Feej0nP5l0q6Px-hC6rhZo0bZ1QZV_u-drZgJnIZRkxgdlDzPBX-pNvNGU1oaV6qrCyUEhxW9LHV9PPlsYRxMgLlkzyZnqOk7XFX39F3oVl1RXnTWnlBNZb7ij6J6yKeacYLjvhhK9O7_-5_y15tWfY9xX_Lp3BU4PezEb-P3t_xV_AoZRu1c</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Hamza, Tasnim</creator><creator>Furukawa, Toshi A</creator><creator>Orsini, Nicola</creator><creator>Cipriani, Andrea</creator><creator>Iglesias, Cynthia P</creator><creator>Salanti, Georgia</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-3830-8508</orcidid><orcidid>https://orcid.org/0000-0002-4700-6990</orcidid><orcidid>https://orcid.org/0000-0003-2159-3776</orcidid><orcidid>https://orcid.org/0000-0002-3426-0930</orcidid></search><sort><creationdate>20240801</creationdate><title>A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines</title><author>Hamza, Tasnim ; Furukawa, Toshi A ; Orsini, Nicola ; Cipriani, Andrea ; Iglesias, Cynthia P ; Salanti, Georgia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-762430a565d44712fe525aa5d273fce4a022badb01b73fff8dd1cc6708d6e9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregate data</topic><topic>Analysis</topic><topic>Antidepressants</topic><topic>Antidepressive Agents - administration &amp; dosage</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>Decision makers</topic><topic>Depression - drug therapy</topic><topic>Dosage</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug dosages</topic><topic>Effectiveness</topic><topic>Efficacy</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Intervention</topic><topic>Meta-analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Models, Statistical</topic><topic>Network Meta-Analysis</topic><topic>Placebo effect</topic><topic>Regression analysis</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamza, Tasnim</creatorcontrib><creatorcontrib>Furukawa, Toshi A</creatorcontrib><creatorcontrib>Orsini, Nicola</creatorcontrib><creatorcontrib>Cipriani, Andrea</creatorcontrib><creatorcontrib>Iglesias, Cynthia P</creatorcontrib><creatorcontrib>Salanti, Georgia</creatorcontrib><collection>SAGE Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Statistical Methods in Medical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamza, Tasnim</au><au>Furukawa, Toshi A</au><au>Orsini, Nicola</au><au>Cipriani, Andrea</au><au>Iglesias, Cynthia P</au><au>Salanti, Georgia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines</atitle><jtitle>Statistical Methods in Medical Research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>33</volume><issue>8</issue><spage>1461</spage><epage>1472</epage><pages>1461-1472</pages><issn>0962-2802</issn><issn>1477-0334</issn><eissn>1477-0334</eissn><abstract>Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs dosage plays in the results. This leads to more heterogeneity in the network. In this paper, we present a suite of network meta-analysis models that incorporate the dose–effect relationship using restricted cubic splines. We extend existing models into a dose–effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect dose–effect network meta-analysis model. We apply our models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are more efficacious than placebo after a certain dose. Also, we identify the dose level at which each antidepressant's effect exceeds that of placebo and estimate the dose beyond which the effect of antidepressants no longer increases. When covariates were introduced to the model, we find that studies with small sample size tend to exaggerate antidepressants efficacy for several of the drugs. Our dose–effect network meta-analysis model with restricted cubic splines provides a flexible approach to modelling the dose–effect relationship in multiple interventions. Decision-makers can use our model to inform treatment choice.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>35200062</pmid><doi>10.1177/09622802211070256</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3830-8508</orcidid><orcidid>https://orcid.org/0000-0002-4700-6990</orcidid><orcidid>https://orcid.org/0000-0003-2159-3776</orcidid><orcidid>https://orcid.org/0000-0002-3426-0930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical Methods in Medical Research, 2024-08, Vol.33 (8), p.1461-1472
issn 0962-2802
1477-0334
1477-0334
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_455280
source Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; SWEPUB Freely available online; Sage Journals
subjects Aggregate data
Analysis
Antidepressants
Antidepressive Agents - administration & dosage
Antidepressive Agents - therapeutic use
Decision makers
Depression - drug therapy
Dosage
Dose-Response Relationship, Drug
Drug dosages
Effectiveness
Efficacy
Heterogeneity
Humans
Intervention
Meta-analysis
Meta-Analysis as Topic
Models, Statistical
Network Meta-Analysis
Placebo effect
Regression analysis
Review
title A dose–effect network meta-analysis model with application in antidepressants using restricted cubic splines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dose%E2%80%93effect%20network%20meta-analysis%20model%20with%20application%20in%20antidepressants%20using%20restricted%20cubic%20splines&rft.jtitle=Statistical%20Methods%20in%20Medical%20Research&rft.au=Hamza,%20Tasnim&rft.date=2024-08-01&rft.volume=33&rft.issue=8&rft.spage=1461&rft.epage=1472&rft.pages=1461-1472&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/09622802211070256&rft_dat=%3Cproquest_swepu%3E2632799318%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113061478&rft_id=info:pmid/35200062&rft_sage_id=10.1177_09622802211070256&rfr_iscdi=true