COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients
We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2022-06, Vol.145, p.105467-105467, Article 105467 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105467 |
---|---|
container_issue | |
container_start_page | 105467 |
container_title | Computers in biology and medicine |
container_volume | 145 |
creator | Shiri, Isaac Salimi, Yazdan Pakbin, Masoumeh Hajianfar, Ghasem Avval, Atlas Haddadi Sanaat, Amirhossein Mostafaei, Shayan Akhavanallaf, Azadeh Saberi, Abdollah Mansouri, Zahra Askari, Dariush Ghasemian, Mohammadreza Sharifipour, Ehsan Sandoughdaran, Saleh Sohrabi, Ahmad Sadati, Elham Livani, Somayeh Iranpour, Pooya Kolahi, Shahriar Khateri, Maziar Bijari, Salar Atashzar, Mohammad Reza Shayesteh, Sajad P. Khosravi, Bardia Babaei, Mohammad Reza Jenabi, Elnaz Hasanian, Mohammad Shahhamzeh, Alireza Foroghi Ghomi, Seyaed Yaser Mozafari, Abolfazl Teimouri, Arash Movaseghi, Fatemeh Ahmari, Azin Goharpey, Neda Bozorgmehr, Rama Shirzad-Aski, Hesamaddin Mortazavi, Roozbeh Karimi, Jalal Mortazavi, Nazanin Besharat, Sima Afsharpad, Mandana Abdollahi, Hamid Geramifar, Parham Radmard, Amir Reza Arabi, Hossein Rezaei-Kalantari, Kiara Oveisi, Mehrdad Rahmim, Arman Zaidi, Habib |
description | We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.
Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported.
In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance.
Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.
[Display omitted]
•CT images of 14′339 COVID-19 patients with known outcome from 19 centers were enrolled.•28 combinations of feature selection and classification approaches were implemented.•The models were evaluated using 10 different splitting and cross-validation strategies.•Lung CT radiomics features are promising for generalizable prognostic modeling. |
doi_str_mv | 10.1016/j.compbiomed.2022.105467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_454314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522002591</els_id><sourcerecordid>2663096637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f4fefea80a8f3d8911b2ded6c17627afc1239830ccdfe2db8b3a4bdf3484fe4a3</originalsourceid><addsrcrecordid>eNqFkktv1DAQxyMEoqXwFZAlLhzI4lcShwNSWV6VKvVSuFqOPdn1ksSL7RT1g_B9mWiXQrlwsa2Z3zw88y8KwuiKUVa_3q1sGPedDyO4Faeco7mSdfOgOGWqaUtaCfmwOKWU0VIqXp0UT1LaUUolFfRxcSIq0Sgp6tPi5_rq68X7krVkH8NmCil7S8bgYPDThsxpOdfXJBqHxdDVg8lzhETM5Mho7NZPQAYwcVpIM2xC9Hk7pjfkfDLDbfKJhJ4YMs5D9qWfMH-esw_oJM5kkyAvAJOvhMAeTPYw5fS0eNSbIcGz431WfPn44Xr9uby8-nSxPr8srWyqXPayB2xIUaN64VTLWMcduNqypuaN6S3jolWCWut64K5TnTCyc72QCiOlEWdFecibfsB-7vQ--tHEWx2M10fTN3yBlpUUTCL_9sCjB0dvsddohnth9z2T3-pNuNGqrSVlFSZ4eUwQw_cZUtajTxaGwUwQ5qR5LRvOeCsW9MU_6C7MEee2ULWgLR4NUupA2RhSitDfNcOoXrSid_qPVvSiFX3QCoY-__szd4G_xYHAuwMAuIIbD1Eni-ux4HwEm7UL_v9VfgHTwdkD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663096637</pqid></control><display><type>article</type><title>COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>SWEPUB Freely available online</source><creator>Shiri, Isaac ; Salimi, Yazdan ; Pakbin, Masoumeh ; Hajianfar, Ghasem ; Avval, Atlas Haddadi ; Sanaat, Amirhossein ; Mostafaei, Shayan ; Akhavanallaf, Azadeh ; Saberi, Abdollah ; Mansouri, Zahra ; Askari, Dariush ; Ghasemian, Mohammadreza ; Sharifipour, Ehsan ; Sandoughdaran, Saleh ; Sohrabi, Ahmad ; Sadati, Elham ; Livani, Somayeh ; Iranpour, Pooya ; Kolahi, Shahriar ; Khateri, Maziar ; Bijari, Salar ; Atashzar, Mohammad Reza ; Shayesteh, Sajad P. ; Khosravi, Bardia ; Babaei, Mohammad Reza ; Jenabi, Elnaz ; Hasanian, Mohammad ; Shahhamzeh, Alireza ; Foroghi Ghomi, Seyaed Yaser ; Mozafari, Abolfazl ; Teimouri, Arash ; Movaseghi, Fatemeh ; Ahmari, Azin ; Goharpey, Neda ; Bozorgmehr, Rama ; Shirzad-Aski, Hesamaddin ; Mortazavi, Roozbeh ; Karimi, Jalal ; Mortazavi, Nazanin ; Besharat, Sima ; Afsharpad, Mandana ; Abdollahi, Hamid ; Geramifar, Parham ; Radmard, Amir Reza ; Arabi, Hossein ; Rezaei-Kalantari, Kiara ; Oveisi, Mehrdad ; Rahmim, Arman ; Zaidi, Habib</creator><creatorcontrib>Shiri, Isaac ; Salimi, Yazdan ; Pakbin, Masoumeh ; Hajianfar, Ghasem ; Avval, Atlas Haddadi ; Sanaat, Amirhossein ; Mostafaei, Shayan ; Akhavanallaf, Azadeh ; Saberi, Abdollah ; Mansouri, Zahra ; Askari, Dariush ; Ghasemian, Mohammadreza ; Sharifipour, Ehsan ; Sandoughdaran, Saleh ; Sohrabi, Ahmad ; Sadati, Elham ; Livani, Somayeh ; Iranpour, Pooya ; Kolahi, Shahriar ; Khateri, Maziar ; Bijari, Salar ; Atashzar, Mohammad Reza ; Shayesteh, Sajad P. ; Khosravi, Bardia ; Babaei, Mohammad Reza ; Jenabi, Elnaz ; Hasanian, Mohammad ; Shahhamzeh, Alireza ; Foroghi Ghomi, Seyaed Yaser ; Mozafari, Abolfazl ; Teimouri, Arash ; Movaseghi, Fatemeh ; Ahmari, Azin ; Goharpey, Neda ; Bozorgmehr, Rama ; Shirzad-Aski, Hesamaddin ; Mortazavi, Roozbeh ; Karimi, Jalal ; Mortazavi, Nazanin ; Besharat, Sima ; Afsharpad, Mandana ; Abdollahi, Hamid ; Geramifar, Parham ; Radmard, Amir Reza ; Arabi, Hossein ; Rezaei-Kalantari, Kiara ; Oveisi, Mehrdad ; Rahmim, Arman ; Zaidi, Habib</creatorcontrib><description>We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.
Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported.
In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance.
Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.
[Display omitted]
•CT images of 14′339 COVID-19 patients with known outcome from 19 centers were enrolled.•28 combinations of feature selection and classification approaches were implemented.•The models were evaluated using 10 different splitting and cross-validation strategies.•Lung CT radiomics features are promising for generalizable prognostic modeling.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.105467</identifier><identifier>PMID: 35378436</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Artificial intelligence ; Classifiers ; Coronaviruses ; COVID-19 ; COVID-19 - diagnostic imaging ; Datasets ; Deep learning ; Feature extraction ; Humans ; Lung Neoplasms ; Lungs ; Machine Learning ; Medical prognosis ; Modelling ; Patients ; Polymerase chain reaction ; Prognosis ; Radiomics ; Retrospective Studies ; Sensitivity ; Statistical analysis ; Tomography, X-Ray Computed - methods ; Variance analysis ; X-ray CT</subject><ispartof>Computers in biology and medicine, 2022-06, Vol.145, p.105467-105467, Article 105467</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2022. The Authors</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f4fefea80a8f3d8911b2ded6c17627afc1239830ccdfe2db8b3a4bdf3484fe4a3</citedby><cites>FETCH-LOGICAL-c475t-f4fefea80a8f3d8911b2ded6c17627afc1239830ccdfe2db8b3a4bdf3484fe4a3</cites><orcidid>0000-0001-7559-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482522002591$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35378436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:154655386$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiri, Isaac</creatorcontrib><creatorcontrib>Salimi, Yazdan</creatorcontrib><creatorcontrib>Pakbin, Masoumeh</creatorcontrib><creatorcontrib>Hajianfar, Ghasem</creatorcontrib><creatorcontrib>Avval, Atlas Haddadi</creatorcontrib><creatorcontrib>Sanaat, Amirhossein</creatorcontrib><creatorcontrib>Mostafaei, Shayan</creatorcontrib><creatorcontrib>Akhavanallaf, Azadeh</creatorcontrib><creatorcontrib>Saberi, Abdollah</creatorcontrib><creatorcontrib>Mansouri, Zahra</creatorcontrib><creatorcontrib>Askari, Dariush</creatorcontrib><creatorcontrib>Ghasemian, Mohammadreza</creatorcontrib><creatorcontrib>Sharifipour, Ehsan</creatorcontrib><creatorcontrib>Sandoughdaran, Saleh</creatorcontrib><creatorcontrib>Sohrabi, Ahmad</creatorcontrib><creatorcontrib>Sadati, Elham</creatorcontrib><creatorcontrib>Livani, Somayeh</creatorcontrib><creatorcontrib>Iranpour, Pooya</creatorcontrib><creatorcontrib>Kolahi, Shahriar</creatorcontrib><creatorcontrib>Khateri, Maziar</creatorcontrib><creatorcontrib>Bijari, Salar</creatorcontrib><creatorcontrib>Atashzar, Mohammad Reza</creatorcontrib><creatorcontrib>Shayesteh, Sajad P.</creatorcontrib><creatorcontrib>Khosravi, Bardia</creatorcontrib><creatorcontrib>Babaei, Mohammad Reza</creatorcontrib><creatorcontrib>Jenabi, Elnaz</creatorcontrib><creatorcontrib>Hasanian, Mohammad</creatorcontrib><creatorcontrib>Shahhamzeh, Alireza</creatorcontrib><creatorcontrib>Foroghi Ghomi, Seyaed Yaser</creatorcontrib><creatorcontrib>Mozafari, Abolfazl</creatorcontrib><creatorcontrib>Teimouri, Arash</creatorcontrib><creatorcontrib>Movaseghi, Fatemeh</creatorcontrib><creatorcontrib>Ahmari, Azin</creatorcontrib><creatorcontrib>Goharpey, Neda</creatorcontrib><creatorcontrib>Bozorgmehr, Rama</creatorcontrib><creatorcontrib>Shirzad-Aski, Hesamaddin</creatorcontrib><creatorcontrib>Mortazavi, Roozbeh</creatorcontrib><creatorcontrib>Karimi, Jalal</creatorcontrib><creatorcontrib>Mortazavi, Nazanin</creatorcontrib><creatorcontrib>Besharat, Sima</creatorcontrib><creatorcontrib>Afsharpad, Mandana</creatorcontrib><creatorcontrib>Abdollahi, Hamid</creatorcontrib><creatorcontrib>Geramifar, Parham</creatorcontrib><creatorcontrib>Radmard, Amir Reza</creatorcontrib><creatorcontrib>Arabi, Hossein</creatorcontrib><creatorcontrib>Rezaei-Kalantari, Kiara</creatorcontrib><creatorcontrib>Oveisi, Mehrdad</creatorcontrib><creatorcontrib>Rahmim, Arman</creatorcontrib><creatorcontrib>Zaidi, Habib</creatorcontrib><title>COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.
Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported.
In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance.
Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.
[Display omitted]
•CT images of 14′339 COVID-19 patients with known outcome from 19 centers were enrolled.•28 combinations of feature selection and classification approaches were implemented.•The models were evaluated using 10 different splitting and cross-validation strategies.•Lung CT radiomics features are promising for generalizable prognostic modeling.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classifiers</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnostic imaging</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Lung Neoplasms</subject><subject>Lungs</subject><subject>Machine Learning</subject><subject>Medical prognosis</subject><subject>Modelling</subject><subject>Patients</subject><subject>Polymerase chain reaction</subject><subject>Prognosis</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>Sensitivity</subject><subject>Statistical analysis</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Variance analysis</subject><subject>X-ray CT</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNqFkktv1DAQxyMEoqXwFZAlLhzI4lcShwNSWV6VKvVSuFqOPdn1ksSL7RT1g_B9mWiXQrlwsa2Z3zw88y8KwuiKUVa_3q1sGPedDyO4Faeco7mSdfOgOGWqaUtaCfmwOKWU0VIqXp0UT1LaUUolFfRxcSIq0Sgp6tPi5_rq68X7krVkH8NmCil7S8bgYPDThsxpOdfXJBqHxdDVg8lzhETM5Mho7NZPQAYwcVpIM2xC9Hk7pjfkfDLDbfKJhJ4YMs5D9qWfMH-esw_oJM5kkyAvAJOvhMAeTPYw5fS0eNSbIcGz431WfPn44Xr9uby8-nSxPr8srWyqXPayB2xIUaN64VTLWMcduNqypuaN6S3jolWCWut64K5TnTCyc72QCiOlEWdFecibfsB-7vQ--tHEWx2M10fTN3yBlpUUTCL_9sCjB0dvsddohnth9z2T3-pNuNGqrSVlFSZ4eUwQw_cZUtajTxaGwUwQ5qR5LRvOeCsW9MU_6C7MEee2ULWgLR4NUupA2RhSitDfNcOoXrSid_qPVvSiFX3QCoY-__szd4G_xYHAuwMAuIIbD1Eni-ux4HwEm7UL_v9VfgHTwdkD</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Shiri, Isaac</creator><creator>Salimi, Yazdan</creator><creator>Pakbin, Masoumeh</creator><creator>Hajianfar, Ghasem</creator><creator>Avval, Atlas Haddadi</creator><creator>Sanaat, Amirhossein</creator><creator>Mostafaei, Shayan</creator><creator>Akhavanallaf, Azadeh</creator><creator>Saberi, Abdollah</creator><creator>Mansouri, Zahra</creator><creator>Askari, Dariush</creator><creator>Ghasemian, Mohammadreza</creator><creator>Sharifipour, Ehsan</creator><creator>Sandoughdaran, Saleh</creator><creator>Sohrabi, Ahmad</creator><creator>Sadati, Elham</creator><creator>Livani, Somayeh</creator><creator>Iranpour, Pooya</creator><creator>Kolahi, Shahriar</creator><creator>Khateri, Maziar</creator><creator>Bijari, Salar</creator><creator>Atashzar, Mohammad Reza</creator><creator>Shayesteh, Sajad P.</creator><creator>Khosravi, Bardia</creator><creator>Babaei, Mohammad Reza</creator><creator>Jenabi, Elnaz</creator><creator>Hasanian, Mohammad</creator><creator>Shahhamzeh, Alireza</creator><creator>Foroghi Ghomi, Seyaed Yaser</creator><creator>Mozafari, Abolfazl</creator><creator>Teimouri, Arash</creator><creator>Movaseghi, Fatemeh</creator><creator>Ahmari, Azin</creator><creator>Goharpey, Neda</creator><creator>Bozorgmehr, Rama</creator><creator>Shirzad-Aski, Hesamaddin</creator><creator>Mortazavi, Roozbeh</creator><creator>Karimi, Jalal</creator><creator>Mortazavi, Nazanin</creator><creator>Besharat, Sima</creator><creator>Afsharpad, Mandana</creator><creator>Abdollahi, Hamid</creator><creator>Geramifar, Parham</creator><creator>Radmard, Amir Reza</creator><creator>Arabi, Hossein</creator><creator>Rezaei-Kalantari, Kiara</creator><creator>Oveisi, Mehrdad</creator><creator>Rahmim, Arman</creator><creator>Zaidi, Habib</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><general>The Authors. Published by Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7559-5297</orcidid></search><sort><creationdate>20220601</creationdate><title>COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients</title><author>Shiri, Isaac ; Salimi, Yazdan ; Pakbin, Masoumeh ; Hajianfar, Ghasem ; Avval, Atlas Haddadi ; Sanaat, Amirhossein ; Mostafaei, Shayan ; Akhavanallaf, Azadeh ; Saberi, Abdollah ; Mansouri, Zahra ; Askari, Dariush ; Ghasemian, Mohammadreza ; Sharifipour, Ehsan ; Sandoughdaran, Saleh ; Sohrabi, Ahmad ; Sadati, Elham ; Livani, Somayeh ; Iranpour, Pooya ; Kolahi, Shahriar ; Khateri, Maziar ; Bijari, Salar ; Atashzar, Mohammad Reza ; Shayesteh, Sajad P. ; Khosravi, Bardia ; Babaei, Mohammad Reza ; Jenabi, Elnaz ; Hasanian, Mohammad ; Shahhamzeh, Alireza ; Foroghi Ghomi, Seyaed Yaser ; Mozafari, Abolfazl ; Teimouri, Arash ; Movaseghi, Fatemeh ; Ahmari, Azin ; Goharpey, Neda ; Bozorgmehr, Rama ; Shirzad-Aski, Hesamaddin ; Mortazavi, Roozbeh ; Karimi, Jalal ; Mortazavi, Nazanin ; Besharat, Sima ; Afsharpad, Mandana ; Abdollahi, Hamid ; Geramifar, Parham ; Radmard, Amir Reza ; Arabi, Hossein ; Rezaei-Kalantari, Kiara ; Oveisi, Mehrdad ; Rahmim, Arman ; Zaidi, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f4fefea80a8f3d8911b2ded6c17627afc1239830ccdfe2db8b3a4bdf3484fe4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classifiers</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnostic imaging</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Lung Neoplasms</topic><topic>Lungs</topic><topic>Machine Learning</topic><topic>Medical prognosis</topic><topic>Modelling</topic><topic>Patients</topic><topic>Polymerase chain reaction</topic><topic>Prognosis</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>Sensitivity</topic><topic>Statistical analysis</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Variance analysis</topic><topic>X-ray CT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiri, Isaac</creatorcontrib><creatorcontrib>Salimi, Yazdan</creatorcontrib><creatorcontrib>Pakbin, Masoumeh</creatorcontrib><creatorcontrib>Hajianfar, Ghasem</creatorcontrib><creatorcontrib>Avval, Atlas Haddadi</creatorcontrib><creatorcontrib>Sanaat, Amirhossein</creatorcontrib><creatorcontrib>Mostafaei, Shayan</creatorcontrib><creatorcontrib>Akhavanallaf, Azadeh</creatorcontrib><creatorcontrib>Saberi, Abdollah</creatorcontrib><creatorcontrib>Mansouri, Zahra</creatorcontrib><creatorcontrib>Askari, Dariush</creatorcontrib><creatorcontrib>Ghasemian, Mohammadreza</creatorcontrib><creatorcontrib>Sharifipour, Ehsan</creatorcontrib><creatorcontrib>Sandoughdaran, Saleh</creatorcontrib><creatorcontrib>Sohrabi, Ahmad</creatorcontrib><creatorcontrib>Sadati, Elham</creatorcontrib><creatorcontrib>Livani, Somayeh</creatorcontrib><creatorcontrib>Iranpour, Pooya</creatorcontrib><creatorcontrib>Kolahi, Shahriar</creatorcontrib><creatorcontrib>Khateri, Maziar</creatorcontrib><creatorcontrib>Bijari, Salar</creatorcontrib><creatorcontrib>Atashzar, Mohammad Reza</creatorcontrib><creatorcontrib>Shayesteh, Sajad P.</creatorcontrib><creatorcontrib>Khosravi, Bardia</creatorcontrib><creatorcontrib>Babaei, Mohammad Reza</creatorcontrib><creatorcontrib>Jenabi, Elnaz</creatorcontrib><creatorcontrib>Hasanian, Mohammad</creatorcontrib><creatorcontrib>Shahhamzeh, Alireza</creatorcontrib><creatorcontrib>Foroghi Ghomi, Seyaed Yaser</creatorcontrib><creatorcontrib>Mozafari, Abolfazl</creatorcontrib><creatorcontrib>Teimouri, Arash</creatorcontrib><creatorcontrib>Movaseghi, Fatemeh</creatorcontrib><creatorcontrib>Ahmari, Azin</creatorcontrib><creatorcontrib>Goharpey, Neda</creatorcontrib><creatorcontrib>Bozorgmehr, Rama</creatorcontrib><creatorcontrib>Shirzad-Aski, Hesamaddin</creatorcontrib><creatorcontrib>Mortazavi, Roozbeh</creatorcontrib><creatorcontrib>Karimi, Jalal</creatorcontrib><creatorcontrib>Mortazavi, Nazanin</creatorcontrib><creatorcontrib>Besharat, Sima</creatorcontrib><creatorcontrib>Afsharpad, Mandana</creatorcontrib><creatorcontrib>Abdollahi, Hamid</creatorcontrib><creatorcontrib>Geramifar, Parham</creatorcontrib><creatorcontrib>Radmard, Amir Reza</creatorcontrib><creatorcontrib>Arabi, Hossein</creatorcontrib><creatorcontrib>Rezaei-Kalantari, Kiara</creatorcontrib><creatorcontrib>Oveisi, Mehrdad</creatorcontrib><creatorcontrib>Rahmim, Arman</creatorcontrib><creatorcontrib>Zaidi, Habib</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiri, Isaac</au><au>Salimi, Yazdan</au><au>Pakbin, Masoumeh</au><au>Hajianfar, Ghasem</au><au>Avval, Atlas Haddadi</au><au>Sanaat, Amirhossein</au><au>Mostafaei, Shayan</au><au>Akhavanallaf, Azadeh</au><au>Saberi, Abdollah</au><au>Mansouri, Zahra</au><au>Askari, Dariush</au><au>Ghasemian, Mohammadreza</au><au>Sharifipour, Ehsan</au><au>Sandoughdaran, Saleh</au><au>Sohrabi, Ahmad</au><au>Sadati, Elham</au><au>Livani, Somayeh</au><au>Iranpour, Pooya</au><au>Kolahi, Shahriar</au><au>Khateri, Maziar</au><au>Bijari, Salar</au><au>Atashzar, Mohammad Reza</au><au>Shayesteh, Sajad P.</au><au>Khosravi, Bardia</au><au>Babaei, Mohammad Reza</au><au>Jenabi, Elnaz</au><au>Hasanian, Mohammad</au><au>Shahhamzeh, Alireza</au><au>Foroghi Ghomi, Seyaed Yaser</au><au>Mozafari, Abolfazl</au><au>Teimouri, Arash</au><au>Movaseghi, Fatemeh</au><au>Ahmari, Azin</au><au>Goharpey, Neda</au><au>Bozorgmehr, Rama</au><au>Shirzad-Aski, Hesamaddin</au><au>Mortazavi, Roozbeh</au><au>Karimi, Jalal</au><au>Mortazavi, Nazanin</au><au>Besharat, Sima</au><au>Afsharpad, Mandana</au><au>Abdollahi, Hamid</au><au>Geramifar, Parham</au><au>Radmard, Amir Reza</au><au>Arabi, Hossein</au><au>Rezaei-Kalantari, Kiara</au><au>Oveisi, Mehrdad</au><au>Rahmim, Arman</au><au>Zaidi, Habib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>145</volume><spage>105467</spage><epage>105467</epage><pages>105467-105467</pages><artnum>105467</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients.
Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported.
In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81–0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81–0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance.
Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.
[Display omitted]
•CT images of 14′339 COVID-19 patients with known outcome from 19 centers were enrolled.•28 combinations of feature selection and classification approaches were implemented.•The models were evaluated using 10 different splitting and cross-validation strategies.•Lung CT radiomics features are promising for generalizable prognostic modeling.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>35378436</pmid><doi>10.1016/j.compbiomed.2022.105467</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7559-5297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2022-06, Vol.145, p.105467-105467, Article 105467 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_454314 |
source | MEDLINE; Elsevier ScienceDirect Journals; SWEPUB Freely available online |
subjects | Algorithms Artificial intelligence Classifiers Coronaviruses COVID-19 COVID-19 - diagnostic imaging Datasets Deep learning Feature extraction Humans Lung Neoplasms Lungs Machine Learning Medical prognosis Modelling Patients Polymerase chain reaction Prognosis Radiomics Retrospective Studies Sensitivity Statistical analysis Tomography, X-Ray Computed - methods Variance analysis X-ray CT |
title | COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COVID-19%20prognostic%20modeling%20using%20CT%20radiomic%20features%20and%20machine%20learning%20algorithms:%20Analysis%20of%20a%20multi-institutional%20dataset%20of%2014,339%20patients&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Shiri,%20Isaac&rft.date=2022-06-01&rft.volume=145&rft.spage=105467&rft.epage=105467&rft.pages=105467-105467&rft.artnum=105467&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.105467&rft_dat=%3Cproquest_swepu%3E2663096637%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663096637&rft_id=info:pmid/35378436&rft_els_id=S0010482522002591&rfr_iscdi=true |