Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks

To assess the accuracy of a novel Artificial Intelligence (AI)-driven tool for automated detection of teeth and small edentulous regions on Cone-Beam Computed Tomography (CBCT) images. After AI training and testing with 175 CBCT scans (130 for training and 40 for testing), validation was performed o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dentistry 2022-07, Vol.122, p.104139-104139, Article 104139
Hauptverfasser: Gerhardt, Maurício do Nascimento, Fontenele, Rocharles Cavalcante, Leite, André Ferreira, Lahoud, Pierre, Van Gerven, Adriaan, Willems, Holger, Smolders, Andreas, Beznik, Thomas, Jacobs, Reinhilde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104139
container_issue
container_start_page 104139
container_title Journal of dentistry
container_volume 122
creator Gerhardt, Maurício do Nascimento
Fontenele, Rocharles Cavalcante
Leite, André Ferreira
Lahoud, Pierre
Van Gerven, Adriaan
Willems, Holger
Smolders, Andreas
Beznik, Thomas
Jacobs, Reinhilde
description To assess the accuracy of a novel Artificial Intelligence (AI)-driven tool for automated detection of teeth and small edentulous regions on Cone-Beam Computed Tomography (CBCT) images. After AI training and testing with 175 CBCT scans (130 for training and 40 for testing), validation was performed on a total of 46 CBCT scans selected for this purpose. Scans were split into fully dentate and partially dentate patients (small edentulous regions). The AI Driven tool (Virtual Patient Creator, Relu BV, Leuven, Belgium) automatically detected, segmented and labelled teeth and edentulous regions. Human performance served as clinical reference. Accuracy and speed of the AI-driven tool to detect and label teeth and edentulous regions in partially edentulous jaws were assessed. Automatic tooth segmentation was compared to manually refined segmentation and accuracy by means of Intersetion over Union (IoU) and 95% Hausdorff Distance served as a secondary outcome. The AI-driven tool achieved a general accuracy of 99.7% and 99% for detection and labelling of teeth and missing teeth for both fully dentate and partially dentate patients, respectively. Automated detections took a median time of 1.5s, while the human operator median time was 98s (P
doi_str_mv 10.1016/j.jdent.2022.104139
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_453874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300571222001956</els_id><sourcerecordid>2672693326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-c098bc0aaf5de9e3fad1087f7addfb6923b58064967f5d3ac6b6bfa7b112f703</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEoofCEyAhS2zY5OBLYicLFlVFC1IlNl2ws3yZnCZN4uBLq74DD41zcuiCBasZjb7_H3v-onhP8J5gwj8P-8HCHPcUU5onFWHti2JHGtGWRPCfL4sdZhiXtSD0rHgTwoAxrjBtXxdnrK44aUW1K35fpOgmFcEiCxFM7N2M1GzRqDSMYz8fkOtQBIh3x3GY1DgiWBen0aWAPByyJKAsM26GUoOacjctafXM3u7g1XL3hFJYzTLz4Ma0rlEjmiH5Y4mPzt-Ht8WrTo0B3p3qeXF79fX28lt58-P6--XFTWkqgWNpcNtog5XqagstsE5ZghvRCWVtp3lLma4bzKuWi0wwZbjmulNCE0I7gdl5UW624RGWpOXi-0n5J-lUL0-j-9yBrGrWiCrznzZ-8e5XghDl1AeTr6NmyCeQlNc1wTXmbUY__oMOLvn81ZUSNBOM8kyxjTLeheChe34CwXLNVg7ymK1cs5Vbtln14eSd9AT2WfM3zAx82QDIt3vowctgepgN2N7nZKV1_X8X_AE-crqL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672693326</pqid></control><display><type>article</type><title>Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks</title><source>Elsevier ScienceDirect Journals</source><source>SWEPUB Freely available online</source><creator>Gerhardt, Maurício do Nascimento ; Fontenele, Rocharles Cavalcante ; Leite, André Ferreira ; Lahoud, Pierre ; Van Gerven, Adriaan ; Willems, Holger ; Smolders, Andreas ; Beznik, Thomas ; Jacobs, Reinhilde</creator><creatorcontrib>Gerhardt, Maurício do Nascimento ; Fontenele, Rocharles Cavalcante ; Leite, André Ferreira ; Lahoud, Pierre ; Van Gerven, Adriaan ; Willems, Holger ; Smolders, Andreas ; Beznik, Thomas ; Jacobs, Reinhilde</creatorcontrib><description>To assess the accuracy of a novel Artificial Intelligence (AI)-driven tool for automated detection of teeth and small edentulous regions on Cone-Beam Computed Tomography (CBCT) images. After AI training and testing with 175 CBCT scans (130 for training and 40 for testing), validation was performed on a total of 46 CBCT scans selected for this purpose. Scans were split into fully dentate and partially dentate patients (small edentulous regions). The AI Driven tool (Virtual Patient Creator, Relu BV, Leuven, Belgium) automatically detected, segmented and labelled teeth and edentulous regions. Human performance served as clinical reference. Accuracy and speed of the AI-driven tool to detect and label teeth and edentulous regions in partially edentulous jaws were assessed. Automatic tooth segmentation was compared to manually refined segmentation and accuracy by means of Intersetion over Union (IoU) and 95% Hausdorff Distance served as a secondary outcome. The AI-driven tool achieved a general accuracy of 99.7% and 99% for detection and labelling of teeth and missing teeth for both fully dentate and partially dentate patients, respectively. Automated detections took a median time of 1.5s, while the human operator median time was 98s (P&lt;0.0001). Segmentation accuracy measured by Intersection over Union was 0.96 and 0.97 for fully dentate and partially edentulous jaws respectively. The AI-driven tool was accurate and fast for CBCT-based detection, segmentation and labelling of teeth and missing teeth in partial edentulism. The use of AI may represent a promising time-saving tool serving radiological reporting, with a major step forward towards automated dental charting, as well as surgical and treatment planning.</description><identifier>ISSN: 0300-5712</identifier><identifier>EISSN: 1879-176X</identifier><identifier>DOI: 10.1016/j.jdent.2022.104139</identifier><identifier>PMID: 35461974</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Accuracy ; Artificial Intelligence ; Artificial neural networks ; Automation ; Big Data ; Classification ; Computed tomography ; Cone-Beam Computed Tomography ; Datasets ; Deep Learning ; Dentistry ; Digital Dentistry ; Digital imaging/radiology ; Edentulous ; Human error ; Human performance ; Image segmentation ; Labeling ; Metric space ; Neural networks ; Patients ; Teeth ; Three dimensional imaging ; Tomography ; Tooth Detection ; Training</subject><ispartof>Journal of dentistry, 2022-07, Vol.122, p.104139-104139, Article 104139</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-c098bc0aaf5de9e3fad1087f7addfb6923b58064967f5d3ac6b6bfa7b112f703</citedby><cites>FETCH-LOGICAL-c470t-c098bc0aaf5de9e3fad1087f7addfb6923b58064967f5d3ac6b6bfa7b112f703</cites><orcidid>0000-0002-7843-0022 ; 0000-0001-5195-7660 ; 0000-0002-7803-4740 ; 0000-0003-1683-2314 ; 0000-0003-2757-9123 ; 0000-0001-5555-2185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0300571222001956$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35461974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:149761623$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerhardt, Maurício do Nascimento</creatorcontrib><creatorcontrib>Fontenele, Rocharles Cavalcante</creatorcontrib><creatorcontrib>Leite, André Ferreira</creatorcontrib><creatorcontrib>Lahoud, Pierre</creatorcontrib><creatorcontrib>Van Gerven, Adriaan</creatorcontrib><creatorcontrib>Willems, Holger</creatorcontrib><creatorcontrib>Smolders, Andreas</creatorcontrib><creatorcontrib>Beznik, Thomas</creatorcontrib><creatorcontrib>Jacobs, Reinhilde</creatorcontrib><title>Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks</title><title>Journal of dentistry</title><addtitle>J Dent</addtitle><description>To assess the accuracy of a novel Artificial Intelligence (AI)-driven tool for automated detection of teeth and small edentulous regions on Cone-Beam Computed Tomography (CBCT) images. After AI training and testing with 175 CBCT scans (130 for training and 40 for testing), validation was performed on a total of 46 CBCT scans selected for this purpose. Scans were split into fully dentate and partially dentate patients (small edentulous regions). The AI Driven tool (Virtual Patient Creator, Relu BV, Leuven, Belgium) automatically detected, segmented and labelled teeth and edentulous regions. Human performance served as clinical reference. Accuracy and speed of the AI-driven tool to detect and label teeth and edentulous regions in partially edentulous jaws were assessed. Automatic tooth segmentation was compared to manually refined segmentation and accuracy by means of Intersetion over Union (IoU) and 95% Hausdorff Distance served as a secondary outcome. The AI-driven tool achieved a general accuracy of 99.7% and 99% for detection and labelling of teeth and missing teeth for both fully dentate and partially dentate patients, respectively. Automated detections took a median time of 1.5s, while the human operator median time was 98s (P&lt;0.0001). Segmentation accuracy measured by Intersection over Union was 0.96 and 0.97 for fully dentate and partially edentulous jaws respectively. The AI-driven tool was accurate and fast for CBCT-based detection, segmentation and labelling of teeth and missing teeth in partial edentulism. The use of AI may represent a promising time-saving tool serving radiological reporting, with a major step forward towards automated dental charting, as well as surgical and treatment planning.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Big Data</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Cone-Beam Computed Tomography</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Dentistry</subject><subject>Digital Dentistry</subject><subject>Digital imaging/radiology</subject><subject>Edentulous</subject><subject>Human error</subject><subject>Human performance</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Metric space</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Teeth</subject><subject>Three dimensional imaging</subject><subject>Tomography</subject><subject>Tooth Detection</subject><subject>Training</subject><issn>0300-5712</issn><issn>1879-176X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp9kctu1TAQhiMEoofCEyAhS2zY5OBLYicLFlVFC1IlNl2ws3yZnCZN4uBLq74DD41zcuiCBasZjb7_H3v-onhP8J5gwj8P-8HCHPcUU5onFWHti2JHGtGWRPCfL4sdZhiXtSD0rHgTwoAxrjBtXxdnrK44aUW1K35fpOgmFcEiCxFM7N2M1GzRqDSMYz8fkOtQBIh3x3GY1DgiWBen0aWAPByyJKAsM26GUoOacjctafXM3u7g1XL3hFJYzTLz4Ma0rlEjmiH5Y4mPzt-Ht8WrTo0B3p3qeXF79fX28lt58-P6--XFTWkqgWNpcNtog5XqagstsE5ZghvRCWVtp3lLma4bzKuWi0wwZbjmulNCE0I7gdl5UW624RGWpOXi-0n5J-lUL0-j-9yBrGrWiCrznzZ-8e5XghDl1AeTr6NmyCeQlNc1wTXmbUY__oMOLvn81ZUSNBOM8kyxjTLeheChe34CwXLNVg7ymK1cs5Vbtln14eSd9AT2WfM3zAx82QDIt3vowctgepgN2N7nZKV1_X8X_AE-crqL</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Gerhardt, Maurício do Nascimento</creator><creator>Fontenele, Rocharles Cavalcante</creator><creator>Leite, André Ferreira</creator><creator>Lahoud, Pierre</creator><creator>Van Gerven, Adriaan</creator><creator>Willems, Holger</creator><creator>Smolders, Andreas</creator><creator>Beznik, Thomas</creator><creator>Jacobs, Reinhilde</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-7843-0022</orcidid><orcidid>https://orcid.org/0000-0001-5195-7660</orcidid><orcidid>https://orcid.org/0000-0002-7803-4740</orcidid><orcidid>https://orcid.org/0000-0003-1683-2314</orcidid><orcidid>https://orcid.org/0000-0003-2757-9123</orcidid><orcidid>https://orcid.org/0000-0001-5555-2185</orcidid></search><sort><creationdate>20220701</creationdate><title>Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks</title><author>Gerhardt, Maurício do Nascimento ; Fontenele, Rocharles Cavalcante ; Leite, André Ferreira ; Lahoud, Pierre ; Van Gerven, Adriaan ; Willems, Holger ; Smolders, Andreas ; Beznik, Thomas ; Jacobs, Reinhilde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-c098bc0aaf5de9e3fad1087f7addfb6923b58064967f5d3ac6b6bfa7b112f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Big Data</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Cone-Beam Computed Tomography</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Dentistry</topic><topic>Digital Dentistry</topic><topic>Digital imaging/radiology</topic><topic>Edentulous</topic><topic>Human error</topic><topic>Human performance</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Metric space</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Teeth</topic><topic>Three dimensional imaging</topic><topic>Tomography</topic><topic>Tooth Detection</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerhardt, Maurício do Nascimento</creatorcontrib><creatorcontrib>Fontenele, Rocharles Cavalcante</creatorcontrib><creatorcontrib>Leite, André Ferreira</creatorcontrib><creatorcontrib>Lahoud, Pierre</creatorcontrib><creatorcontrib>Van Gerven, Adriaan</creatorcontrib><creatorcontrib>Willems, Holger</creatorcontrib><creatorcontrib>Smolders, Andreas</creatorcontrib><creatorcontrib>Beznik, Thomas</creatorcontrib><creatorcontrib>Jacobs, Reinhilde</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Journal of dentistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerhardt, Maurício do Nascimento</au><au>Fontenele, Rocharles Cavalcante</au><au>Leite, André Ferreira</au><au>Lahoud, Pierre</au><au>Van Gerven, Adriaan</au><au>Willems, Holger</au><au>Smolders, Andreas</au><au>Beznik, Thomas</au><au>Jacobs, Reinhilde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks</atitle><jtitle>Journal of dentistry</jtitle><addtitle>J Dent</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>122</volume><spage>104139</spage><epage>104139</epage><pages>104139-104139</pages><artnum>104139</artnum><issn>0300-5712</issn><eissn>1879-176X</eissn><abstract>To assess the accuracy of a novel Artificial Intelligence (AI)-driven tool for automated detection of teeth and small edentulous regions on Cone-Beam Computed Tomography (CBCT) images. After AI training and testing with 175 CBCT scans (130 for training and 40 for testing), validation was performed on a total of 46 CBCT scans selected for this purpose. Scans were split into fully dentate and partially dentate patients (small edentulous regions). The AI Driven tool (Virtual Patient Creator, Relu BV, Leuven, Belgium) automatically detected, segmented and labelled teeth and edentulous regions. Human performance served as clinical reference. Accuracy and speed of the AI-driven tool to detect and label teeth and edentulous regions in partially edentulous jaws were assessed. Automatic tooth segmentation was compared to manually refined segmentation and accuracy by means of Intersetion over Union (IoU) and 95% Hausdorff Distance served as a secondary outcome. The AI-driven tool achieved a general accuracy of 99.7% and 99% for detection and labelling of teeth and missing teeth for both fully dentate and partially dentate patients, respectively. Automated detections took a median time of 1.5s, while the human operator median time was 98s (P&lt;0.0001). Segmentation accuracy measured by Intersection over Union was 0.96 and 0.97 for fully dentate and partially edentulous jaws respectively. The AI-driven tool was accurate and fast for CBCT-based detection, segmentation and labelling of teeth and missing teeth in partial edentulism. The use of AI may represent a promising time-saving tool serving radiological reporting, with a major step forward towards automated dental charting, as well as surgical and treatment planning.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35461974</pmid><doi>10.1016/j.jdent.2022.104139</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7843-0022</orcidid><orcidid>https://orcid.org/0000-0001-5195-7660</orcidid><orcidid>https://orcid.org/0000-0002-7803-4740</orcidid><orcidid>https://orcid.org/0000-0003-1683-2314</orcidid><orcidid>https://orcid.org/0000-0003-2757-9123</orcidid><orcidid>https://orcid.org/0000-0001-5555-2185</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0300-5712
ispartof Journal of dentistry, 2022-07, Vol.122, p.104139-104139, Article 104139
issn 0300-5712
1879-176X
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_453874
source Elsevier ScienceDirect Journals; SWEPUB Freely available online
subjects Accuracy
Artificial Intelligence
Artificial neural networks
Automation
Big Data
Classification
Computed tomography
Cone-Beam Computed Tomography
Datasets
Deep Learning
Dentistry
Digital Dentistry
Digital imaging/radiology
Edentulous
Human error
Human performance
Image segmentation
Labeling
Metric space
Neural networks
Patients
Teeth
Three dimensional imaging
Tomography
Tooth Detection
Training
title Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20and%20labelling%20of%20teeth%20and%20small%20edentulous%20regions%20on%20cone-beam%20computed%20tomography%20using%20convolutional%20neural%20networks&rft.jtitle=Journal%20of%20dentistry&rft.au=Gerhardt,%20Maur%C3%ADcio%20do%20Nascimento&rft.date=2022-07-01&rft.volume=122&rft.spage=104139&rft.epage=104139&rft.pages=104139-104139&rft.artnum=104139&rft.issn=0300-5712&rft.eissn=1879-176X&rft_id=info:doi/10.1016/j.jdent.2022.104139&rft_dat=%3Cproquest_swepu%3E2672693326%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672693326&rft_id=info:pmid/35461974&rft_els_id=S0300571222001956&rfr_iscdi=true