The number needed to treat adjusted for explanatory variables in regression and survival analysis: Theory and application
The number needed to treat (NNT) is an efficacy index commonly used in randomized clinical trials. The NNT is the average number of treated patients for each undesirable patient outcome, for example, death, prevented by the treatment. We introduce a systematic theoretically‐based framework to model...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2022-07, Vol.41 (17), p.3299-3320 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3320 |
---|---|
container_issue | 17 |
container_start_page | 3299 |
container_title | Statistics in medicine |
container_volume | 41 |
creator | Vancak, Valentin Goldberg, Yair Levine, Stephen Z. |
description | The number needed to treat (NNT) is an efficacy index commonly used in randomized clinical trials. The NNT is the average number of treated patients for each undesirable patient outcome, for example, death, prevented by the treatment. We introduce a systematic theoretically‐based framework to model and estimate the conditional and the harmonic mean NNT in the presence of explanatory variables, in various models with dichotomous and nondichotomous outcomes. The conditional NNT is illustrated in a series of four primary examples; logistic regression, linear regression, Kaplan‐Meier estimation, and Cox regression models. Also, we establish and prove mathematically the exact relationship between the conditional and the harmonic mean NNT in the presence of explanatory variables. We introduce four different methods to calculate asymptotically‐correct confidence intervals for both indices. Finally, we implemented a simulation study to provide numerical demonstrations of the aforementioned theoretical results and the four examples. Numerical analysis showed that the parametric estimators of the NNT with nonparametric bootstrap‐based confidence intervals outperformed other examined combinations in most settings. An R package and a web application have been developed and made available online to calculate the conditional and the harmonic mean NNTs with their corresponding confidence intervals. |
doi_str_mv | 10.1002/sim.9418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_453817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688879715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3828-e031f8827f1e6068ffedff476c37d666edcf48e2925a8372cfe4ef6658b124273</originalsourceid><addsrcrecordid>eNp1kdFv1SAUxonRuOs08S8wJL740gmUAvXNLDqXzPjgfCa0PSjXtlROe2f_-1F33RITnzic8-ODj4-Ql5ydccbEWwzDWS25eUR2nNW6YKIyj8mOCa0LpXl1Qp4h7hnjvBL6KTkpK6mF4WZH1usfQMdlaCDREaCDjs6RzgncTF23X3DOHR8Thd9T70Y3x7TSg0vBNT0gDSNN8D0BYogjdWNHcUmHcHB93rh-xYDvaL5iO7VN3TT1oXVzpp-TJ971CC-O6yn59vHD9fmn4urLxeX5-6uiLY0wBbCSe2OE9hwUU8Z76LyXWrWl7pRS0LVeGhC1qJwptWg9SPBKVabhQgpdnpLiThdvYFoaO6UwuLTa6II9tn7mCqysSsM3_s0dP6X4awGc7RCwhT67h7igFapSgrFayoy-_gfdxyVl3xtljNF1_vsHwTZFxAT-_gmc2S0-m-OzW3wZfXUUXJoBunvwb14PZm5CD-t_hezXy89_BG8BT72lww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688879715</pqid></control><display><type>article</type><title>The number needed to treat adjusted for explanatory variables in regression and survival analysis: Theory and application</title><source>SWEPUB Freely available online</source><source>Wiley Online Library All Journals</source><creator>Vancak, Valentin ; Goldberg, Yair ; Levine, Stephen Z.</creator><creatorcontrib>Vancak, Valentin ; Goldberg, Yair ; Levine, Stephen Z.</creatorcontrib><description>The number needed to treat (NNT) is an efficacy index commonly used in randomized clinical trials. The NNT is the average number of treated patients for each undesirable patient outcome, for example, death, prevented by the treatment. We introduce a systematic theoretically‐based framework to model and estimate the conditional and the harmonic mean NNT in the presence of explanatory variables, in various models with dichotomous and nondichotomous outcomes. The conditional NNT is illustrated in a series of four primary examples; logistic regression, linear regression, Kaplan‐Meier estimation, and Cox regression models. Also, we establish and prove mathematically the exact relationship between the conditional and the harmonic mean NNT in the presence of explanatory variables. We introduce four different methods to calculate asymptotically‐correct confidence intervals for both indices. Finally, we implemented a simulation study to provide numerical demonstrations of the aforementioned theoretical results and the four examples. Numerical analysis showed that the parametric estimators of the NNT with nonparametric bootstrap‐based confidence intervals outperformed other examined combinations in most settings. An R package and a web application have been developed and made available online to calculate the conditional and the harmonic mean NNTs with their corresponding confidence intervals.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9418</identifier><identifier>PMID: 35472818</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>adjusted NNT ; conditional NNT ; Confidence intervals ; harmonic NNT ; NNT ; Survival analysis ; the cox model</subject><ispartof>Statistics in medicine, 2022-07, Vol.41 (17), p.3299-3320</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3828-e031f8827f1e6068ffedff476c37d666edcf48e2925a8372cfe4ef6658b124273</cites><orcidid>0000-0001-8732-7353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9418$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9418$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35472818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:149389846$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Vancak, Valentin</creatorcontrib><creatorcontrib>Goldberg, Yair</creatorcontrib><creatorcontrib>Levine, Stephen Z.</creatorcontrib><title>The number needed to treat adjusted for explanatory variables in regression and survival analysis: Theory and application</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>The number needed to treat (NNT) is an efficacy index commonly used in randomized clinical trials. The NNT is the average number of treated patients for each undesirable patient outcome, for example, death, prevented by the treatment. We introduce a systematic theoretically‐based framework to model and estimate the conditional and the harmonic mean NNT in the presence of explanatory variables, in various models with dichotomous and nondichotomous outcomes. The conditional NNT is illustrated in a series of four primary examples; logistic regression, linear regression, Kaplan‐Meier estimation, and Cox regression models. Also, we establish and prove mathematically the exact relationship between the conditional and the harmonic mean NNT in the presence of explanatory variables. We introduce four different methods to calculate asymptotically‐correct confidence intervals for both indices. Finally, we implemented a simulation study to provide numerical demonstrations of the aforementioned theoretical results and the four examples. Numerical analysis showed that the parametric estimators of the NNT with nonparametric bootstrap‐based confidence intervals outperformed other examined combinations in most settings. An R package and a web application have been developed and made available online to calculate the conditional and the harmonic mean NNTs with their corresponding confidence intervals.</description><subject>adjusted NNT</subject><subject>conditional NNT</subject><subject>Confidence intervals</subject><subject>harmonic NNT</subject><subject>NNT</subject><subject>Survival analysis</subject><subject>the cox model</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>D8T</sourceid><recordid>eNp1kdFv1SAUxonRuOs08S8wJL740gmUAvXNLDqXzPjgfCa0PSjXtlROe2f_-1F33RITnzic8-ODj4-Ql5ydccbEWwzDWS25eUR2nNW6YKIyj8mOCa0LpXl1Qp4h7hnjvBL6KTkpK6mF4WZH1usfQMdlaCDREaCDjs6RzgncTF23X3DOHR8Thd9T70Y3x7TSg0vBNT0gDSNN8D0BYogjdWNHcUmHcHB93rh-xYDvaL5iO7VN3TT1oXVzpp-TJ971CC-O6yn59vHD9fmn4urLxeX5-6uiLY0wBbCSe2OE9hwUU8Z76LyXWrWl7pRS0LVeGhC1qJwptWg9SPBKVabhQgpdnpLiThdvYFoaO6UwuLTa6II9tn7mCqysSsM3_s0dP6X4awGc7RCwhT67h7igFapSgrFayoy-_gfdxyVl3xtljNF1_vsHwTZFxAT-_gmc2S0-m-OzW3wZfXUUXJoBunvwb14PZm5CD-t_hezXy89_BG8BT72lww</recordid><startdate>20220730</startdate><enddate>20220730</enddate><creator>Vancak, Valentin</creator><creator>Goldberg, Yair</creator><creator>Levine, Stephen Z.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-8732-7353</orcidid></search><sort><creationdate>20220730</creationdate><title>The number needed to treat adjusted for explanatory variables in regression and survival analysis: Theory and application</title><author>Vancak, Valentin ; Goldberg, Yair ; Levine, Stephen Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3828-e031f8827f1e6068ffedff476c37d666edcf48e2925a8372cfe4ef6658b124273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>adjusted NNT</topic><topic>conditional NNT</topic><topic>Confidence intervals</topic><topic>harmonic NNT</topic><topic>NNT</topic><topic>Survival analysis</topic><topic>the cox model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vancak, Valentin</creatorcontrib><creatorcontrib>Goldberg, Yair</creatorcontrib><creatorcontrib>Levine, Stephen Z.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vancak, Valentin</au><au>Goldberg, Yair</au><au>Levine, Stephen Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The number needed to treat adjusted for explanatory variables in regression and survival analysis: Theory and application</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2022-07-30</date><risdate>2022</risdate><volume>41</volume><issue>17</issue><spage>3299</spage><epage>3320</epage><pages>3299-3320</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>The number needed to treat (NNT) is an efficacy index commonly used in randomized clinical trials. The NNT is the average number of treated patients for each undesirable patient outcome, for example, death, prevented by the treatment. We introduce a systematic theoretically‐based framework to model and estimate the conditional and the harmonic mean NNT in the presence of explanatory variables, in various models with dichotomous and nondichotomous outcomes. The conditional NNT is illustrated in a series of four primary examples; logistic regression, linear regression, Kaplan‐Meier estimation, and Cox regression models. Also, we establish and prove mathematically the exact relationship between the conditional and the harmonic mean NNT in the presence of explanatory variables. We introduce four different methods to calculate asymptotically‐correct confidence intervals for both indices. Finally, we implemented a simulation study to provide numerical demonstrations of the aforementioned theoretical results and the four examples. Numerical analysis showed that the parametric estimators of the NNT with nonparametric bootstrap‐based confidence intervals outperformed other examined combinations in most settings. An R package and a web application have been developed and made available online to calculate the conditional and the harmonic mean NNTs with their corresponding confidence intervals.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35472818</pmid><doi>10.1002/sim.9418</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8732-7353</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2022-07, Vol.41 (17), p.3299-3320 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_453817 |
source | SWEPUB Freely available online; Wiley Online Library All Journals |
subjects | adjusted NNT conditional NNT Confidence intervals harmonic NNT NNT Survival analysis the cox model |
title | The number needed to treat adjusted for explanatory variables in regression and survival analysis: Theory and application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20number%20needed%20to%20treat%20adjusted%20for%20explanatory%20variables%20in%20regression%20and%20survival%20analysis:%20Theory%20and%20application&rft.jtitle=Statistics%20in%20medicine&rft.au=Vancak,%20Valentin&rft.date=2022-07-30&rft.volume=41&rft.issue=17&rft.spage=3299&rft.epage=3320&rft.pages=3299-3320&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9418&rft_dat=%3Cproquest_swepu%3E2688879715%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688879715&rft_id=info:pmid/35472818&rfr_iscdi=true |