Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit

Nonresolving inflammation underlies a range of chronic inflammatory diseases, and therapeutic acceleration of resolution of inflammation may improve outcomes. Neural reflexes regulate the intensity of inflammation (for example, through signals in the vagus nerve), but whether activation of the vagus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-05, Vol.119 (22), p.1-11
Hauptverfasser: Caravaca, April S., Gallina, Alessandro L., Tarnawski, Laura, Shavva, Vladimir S., Colas, Romain A., Dalli, Jesmond, Malin, Stephen G., Hult, Henrik, Arnardottir, Hildur, Olofsson, Peder S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 22
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Caravaca, April S.
Gallina, Alessandro L.
Tarnawski, Laura
Shavva, Vladimir S.
Colas, Romain A.
Dalli, Jesmond
Malin, Stephen G.
Hult, Henrik
Arnardottir, Hildur
Olofsson, Peder S.
description Nonresolving inflammation underlies a range of chronic inflammatory diseases, and therapeutic acceleration of resolution of inflammation may improve outcomes. Neural reflexes regulate the intensity of inflammation (for example, through signals in the vagus nerve), but whether activation of the vagus nerve promotes the resolution of inflammation in vivo has been unknown. To investigate this, mice were subjected to electrical vagus nerve stimulation (VNS) or sham surgery at the cervical level followed by zymosan-induced peritonitis. The duration of inflammation resolution was significantly reduced and efferocytosis was significantly increased in mice treated with VNS as compared with sham. Lipid mediator (LM) metabololipidomics revealed that mice treated with VNS had higher levels of specialized proresolving mediators (SPMs), particularly from the omega-3 docosahexaenoic (DHA) and docosapentaenoic (n-3 DPA) metabolomes, in peritoneal exudates. VNS also shifted the ratio between proinflammatory and proresolving LMs toward a proresolving profile, but this effect by VNS was inverted in mice deficient in 12/15-lipoxgenase (Alox15), a key enzyme in this SPM biosynthesis. The significant VNS-mediated reduction of neutrophil numbers in peritoneal exudates was absent in mice deficient in the cholinergic α7-nicotinic acetylcholine receptor subunit (α7nAChR), an essential component of the inflammatory reflex. Thus, VNS increased local levels of SPM and accelerated resolution of inflammation in zymosan-induced peritonitis by a mechanism that involves Alox15 and requires the α7nAChR.
doi_str_mv 10.1073/pnas.2023285119
format Article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_453145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27152017</jstor_id><sourcerecordid>27152017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-76e59fb1d0e5de3f05a8c268f2c917dfdd1b41cab50673f0a0302a463b77d2843</originalsourceid><addsrcrecordid>eNp9kstu1DAYhSMEokNhzQpkqRs2aX13vEEaDVepEhKCbi0ncWY8Teyp7Qx0ySPxIjwTDhkGyoKFZes_3zmyrVMUTxE8R1CQi53T8RxDTHDFEJL3igWCEpWcSni_WECIRVlRTE-KRzFuIYSSVfBhcUIYx7iSdFF8u9LrMQJnwt6AmOww9jpZ78Au-MEnE0Ew0ffjr5nvgHVdr4dhZupboMFgmo12Ng4gbXTKwN73--xb9v4rYkC7NkfcjDbnZMKAH9-FW642H0Ec69HZ9Lh40Ok-mieH_bT4_Ob1p9W78vLD2_er5WXZMCRTKbhhsqtRCw1rDekg01WDedXhRiLRdm2LaooaXTPIRZY1JBBrykktRIsrSk6Lcs6NX8xurNUu2EGHW-W1VYfRdT4ZRRlBef2Pf2WvlsqHtbpOG0UwJRXM_MuZz_Bg2sa4FHR_x3ZXcXaj1n6vJJZM8CngxSEg-JvRxKQGGxvT99oZP0aFuUCYM86rjJ79g279GFz-vokiHEtKp8CLmWqCjzGY7ngZBNVUHzXVR_2pT3Y8__sNR_53XzLwbAa2Mflw1LFADEMkyE8FCs72</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673629440</pqid></control><display><type>article</type><title>Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><creator>Caravaca, April S. ; Gallina, Alessandro L. ; Tarnawski, Laura ; Shavva, Vladimir S. ; Colas, Romain A. ; Dalli, Jesmond ; Malin, Stephen G. ; Hult, Henrik ; Arnardottir, Hildur ; Olofsson, Peder S.</creator><creatorcontrib>Caravaca, April S. ; Gallina, Alessandro L. ; Tarnawski, Laura ; Shavva, Vladimir S. ; Colas, Romain A. ; Dalli, Jesmond ; Malin, Stephen G. ; Hult, Henrik ; Arnardottir, Hildur ; Olofsson, Peder S.</creatorcontrib><description>Nonresolving inflammation underlies a range of chronic inflammatory diseases, and therapeutic acceleration of resolution of inflammation may improve outcomes. Neural reflexes regulate the intensity of inflammation (for example, through signals in the vagus nerve), but whether activation of the vagus nerve promotes the resolution of inflammation in vivo has been unknown. To investigate this, mice were subjected to electrical vagus nerve stimulation (VNS) or sham surgery at the cervical level followed by zymosan-induced peritonitis. The duration of inflammation resolution was significantly reduced and efferocytosis was significantly increased in mice treated with VNS as compared with sham. Lipid mediator (LM) metabololipidomics revealed that mice treated with VNS had higher levels of specialized proresolving mediators (SPMs), particularly from the omega-3 docosahexaenoic (DHA) and docosapentaenoic (n-3 DPA) metabolomes, in peritoneal exudates. VNS also shifted the ratio between proinflammatory and proresolving LMs toward a proresolving profile, but this effect by VNS was inverted in mice deficient in 12/15-lipoxgenase (Alox15), a key enzyme in this SPM biosynthesis. The significant VNS-mediated reduction of neutrophil numbers in peritoneal exudates was absent in mice deficient in the cholinergic α7-nicotinic acetylcholine receptor subunit (α7nAChR), an essential component of the inflammatory reflex. Thus, VNS increased local levels of SPM and accelerated resolution of inflammation in zymosan-induced peritonitis by a mechanism that involves Alox15 and requires the α7nAChR.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2023285119</identifier><identifier>PMID: 35622894</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>a7nAChR gene ; Alox15 gene ; Alox15 protein ; alpha7 Nicotinic Acetylcholine Receptor ; alpha7 Nicotinic Acetylcholine Receptor - genetics ; animal ; animal cell ; animal experiment ; animal model ; animal tissue ; Animals ; Arachidonate 12-Lipoxygenase ; Arachidonate 12-Lipoxygenase - genetics ; Arachidonate 12-Lipoxygenase - metabolism ; Arachidonate 15-Lipoxygenase ; Arachidonate 15-Lipoxygenase - genetics ; Arachidonate 15-Lipoxygenase - metabolism ; autacoid ; autonomic reflex ; Biological Sciences ; Biosynthesis ; bungarotoxin receptor ; cervonic acid ; Cholinergics ; controlled study ; disease duration ; Disease Models, Animal ; docosapentaenoic acid ; efferocytosis ; ex vivo study ; Exudates ; Exudation ; gene ; genetics ; In vivo methods and tests ; in vivo study ; Inflammation ; Inflammation - therapy ; Inflammation Mediators ; Inflammation Mediators - metabolism ; Inflammatory diseases ; Leukocytes (neutrophilic) ; lipid mediators ; lipidomics ; Lipids ; male ; Mice ; Mice, Mutant Strains ; mouse ; Nerves ; nervous system inflammation ; neuroinflammation ; nonhuman ; Peritoneum ; peritoneum exudate ; Peritonitis ; physiology ; Reflexes ; Stimulation ; surgical technique ; Vagus Nerve ; Vagus Nerve - physiology ; Vagus Nerve Stimulation ; zymosan</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-05, Vol.119 (22), p.1-11</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences May 31, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-76e59fb1d0e5de3f05a8c268f2c917dfdd1b41cab50673f0a0302a463b77d2843</citedby><cites>FETCH-LOGICAL-c519t-76e59fb1d0e5de3f05a8c268f2c917dfdd1b41cab50673f0a0302a463b77d2843</cites><orcidid>0000-0001-6328-3640 ; 0000-0001-7723-9579 ; 0000-0002-5163-3946 ; 0000-0002-0127-8309 ; 0000-0001-9210-121X ; 0000-0003-3473-5948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295760/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35622894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-324380$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:153479786$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Caravaca, April S.</creatorcontrib><creatorcontrib>Gallina, Alessandro L.</creatorcontrib><creatorcontrib>Tarnawski, Laura</creatorcontrib><creatorcontrib>Shavva, Vladimir S.</creatorcontrib><creatorcontrib>Colas, Romain A.</creatorcontrib><creatorcontrib>Dalli, Jesmond</creatorcontrib><creatorcontrib>Malin, Stephen G.</creatorcontrib><creatorcontrib>Hult, Henrik</creatorcontrib><creatorcontrib>Arnardottir, Hildur</creatorcontrib><creatorcontrib>Olofsson, Peder S.</creatorcontrib><title>Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nonresolving inflammation underlies a range of chronic inflammatory diseases, and therapeutic acceleration of resolution of inflammation may improve outcomes. Neural reflexes regulate the intensity of inflammation (for example, through signals in the vagus nerve), but whether activation of the vagus nerve promotes the resolution of inflammation in vivo has been unknown. To investigate this, mice were subjected to electrical vagus nerve stimulation (VNS) or sham surgery at the cervical level followed by zymosan-induced peritonitis. The duration of inflammation resolution was significantly reduced and efferocytosis was significantly increased in mice treated with VNS as compared with sham. Lipid mediator (LM) metabololipidomics revealed that mice treated with VNS had higher levels of specialized proresolving mediators (SPMs), particularly from the omega-3 docosahexaenoic (DHA) and docosapentaenoic (n-3 DPA) metabolomes, in peritoneal exudates. VNS also shifted the ratio between proinflammatory and proresolving LMs toward a proresolving profile, but this effect by VNS was inverted in mice deficient in 12/15-lipoxgenase (Alox15), a key enzyme in this SPM biosynthesis. The significant VNS-mediated reduction of neutrophil numbers in peritoneal exudates was absent in mice deficient in the cholinergic α7-nicotinic acetylcholine receptor subunit (α7nAChR), an essential component of the inflammatory reflex. Thus, VNS increased local levels of SPM and accelerated resolution of inflammation in zymosan-induced peritonitis by a mechanism that involves Alox15 and requires the α7nAChR.</description><subject>a7nAChR gene</subject><subject>Alox15 gene</subject><subject>Alox15 protein</subject><subject>alpha7 Nicotinic Acetylcholine Receptor</subject><subject>alpha7 Nicotinic Acetylcholine Receptor - genetics</subject><subject>animal</subject><subject>animal cell</subject><subject>animal experiment</subject><subject>animal model</subject><subject>animal tissue</subject><subject>Animals</subject><subject>Arachidonate 12-Lipoxygenase</subject><subject>Arachidonate 12-Lipoxygenase - genetics</subject><subject>Arachidonate 12-Lipoxygenase - metabolism</subject><subject>Arachidonate 15-Lipoxygenase</subject><subject>Arachidonate 15-Lipoxygenase - genetics</subject><subject>Arachidonate 15-Lipoxygenase - metabolism</subject><subject>autacoid</subject><subject>autonomic reflex</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>bungarotoxin receptor</subject><subject>cervonic acid</subject><subject>Cholinergics</subject><subject>controlled study</subject><subject>disease duration</subject><subject>Disease Models, Animal</subject><subject>docosapentaenoic acid</subject><subject>efferocytosis</subject><subject>ex vivo study</subject><subject>Exudates</subject><subject>Exudation</subject><subject>gene</subject><subject>genetics</subject><subject>In vivo methods and tests</subject><subject>in vivo study</subject><subject>Inflammation</subject><subject>Inflammation - therapy</subject><subject>Inflammation Mediators</subject><subject>Inflammation Mediators - metabolism</subject><subject>Inflammatory diseases</subject><subject>Leukocytes (neutrophilic)</subject><subject>lipid mediators</subject><subject>lipidomics</subject><subject>Lipids</subject><subject>male</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>mouse</subject><subject>Nerves</subject><subject>nervous system inflammation</subject><subject>neuroinflammation</subject><subject>nonhuman</subject><subject>Peritoneum</subject><subject>peritoneum exudate</subject><subject>Peritonitis</subject><subject>physiology</subject><subject>Reflexes</subject><subject>Stimulation</subject><subject>surgical technique</subject><subject>Vagus Nerve</subject><subject>Vagus Nerve - physiology</subject><subject>Vagus Nerve Stimulation</subject><subject>zymosan</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kstu1DAYhSMEokNhzQpkqRs2aX13vEEaDVepEhKCbi0ncWY8Teyp7Qx0ySPxIjwTDhkGyoKFZes_3zmyrVMUTxE8R1CQi53T8RxDTHDFEJL3igWCEpWcSni_WECIRVlRTE-KRzFuIYSSVfBhcUIYx7iSdFF8u9LrMQJnwt6AmOww9jpZ78Au-MEnE0Ew0ffjr5nvgHVdr4dhZupboMFgmo12Ng4gbXTKwN73--xb9v4rYkC7NkfcjDbnZMKAH9-FW642H0Ec69HZ9Lh40Ok-mieH_bT4_Ob1p9W78vLD2_er5WXZMCRTKbhhsqtRCw1rDekg01WDedXhRiLRdm2LaooaXTPIRZY1JBBrykktRIsrSk6Lcs6NX8xurNUu2EGHW-W1VYfRdT4ZRRlBef2Pf2WvlsqHtbpOG0UwJRXM_MuZz_Bg2sa4FHR_x3ZXcXaj1n6vJJZM8CngxSEg-JvRxKQGGxvT99oZP0aFuUCYM86rjJ79g279GFz-vokiHEtKp8CLmWqCjzGY7ngZBNVUHzXVR_2pT3Y8__sNR_53XzLwbAa2Mflw1LFADEMkyE8FCs72</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Caravaca, April S.</creator><creator>Gallina, Alessandro L.</creator><creator>Tarnawski, Laura</creator><creator>Shavva, Vladimir S.</creator><creator>Colas, Romain A.</creator><creator>Dalli, Jesmond</creator><creator>Malin, Stephen G.</creator><creator>Hult, Henrik</creator><creator>Arnardottir, Hildur</creator><creator>Olofsson, Peder S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-6328-3640</orcidid><orcidid>https://orcid.org/0000-0001-7723-9579</orcidid><orcidid>https://orcid.org/0000-0002-5163-3946</orcidid><orcidid>https://orcid.org/0000-0002-0127-8309</orcidid><orcidid>https://orcid.org/0000-0001-9210-121X</orcidid><orcidid>https://orcid.org/0000-0003-3473-5948</orcidid></search><sort><creationdate>20220531</creationdate><title>Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit</title><author>Caravaca, April S. ; Gallina, Alessandro L. ; Tarnawski, Laura ; Shavva, Vladimir S. ; Colas, Romain A. ; Dalli, Jesmond ; Malin, Stephen G. ; Hult, Henrik ; Arnardottir, Hildur ; Olofsson, Peder S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-76e59fb1d0e5de3f05a8c268f2c917dfdd1b41cab50673f0a0302a463b77d2843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>a7nAChR gene</topic><topic>Alox15 gene</topic><topic>Alox15 protein</topic><topic>alpha7 Nicotinic Acetylcholine Receptor</topic><topic>alpha7 Nicotinic Acetylcholine Receptor - genetics</topic><topic>animal</topic><topic>animal cell</topic><topic>animal experiment</topic><topic>animal model</topic><topic>animal tissue</topic><topic>Animals</topic><topic>Arachidonate 12-Lipoxygenase</topic><topic>Arachidonate 12-Lipoxygenase - genetics</topic><topic>Arachidonate 12-Lipoxygenase - metabolism</topic><topic>Arachidonate 15-Lipoxygenase</topic><topic>Arachidonate 15-Lipoxygenase - genetics</topic><topic>Arachidonate 15-Lipoxygenase - metabolism</topic><topic>autacoid</topic><topic>autonomic reflex</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>bungarotoxin receptor</topic><topic>cervonic acid</topic><topic>Cholinergics</topic><topic>controlled study</topic><topic>disease duration</topic><topic>Disease Models, Animal</topic><topic>docosapentaenoic acid</topic><topic>efferocytosis</topic><topic>ex vivo study</topic><topic>Exudates</topic><topic>Exudation</topic><topic>gene</topic><topic>genetics</topic><topic>In vivo methods and tests</topic><topic>in vivo study</topic><topic>Inflammation</topic><topic>Inflammation - therapy</topic><topic>Inflammation Mediators</topic><topic>Inflammation Mediators - metabolism</topic><topic>Inflammatory diseases</topic><topic>Leukocytes (neutrophilic)</topic><topic>lipid mediators</topic><topic>lipidomics</topic><topic>Lipids</topic><topic>male</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>mouse</topic><topic>Nerves</topic><topic>nervous system inflammation</topic><topic>neuroinflammation</topic><topic>nonhuman</topic><topic>Peritoneum</topic><topic>peritoneum exudate</topic><topic>Peritonitis</topic><topic>physiology</topic><topic>Reflexes</topic><topic>Stimulation</topic><topic>surgical technique</topic><topic>Vagus Nerve</topic><topic>Vagus Nerve - physiology</topic><topic>Vagus Nerve Stimulation</topic><topic>zymosan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caravaca, April S.</creatorcontrib><creatorcontrib>Gallina, Alessandro L.</creatorcontrib><creatorcontrib>Tarnawski, Laura</creatorcontrib><creatorcontrib>Shavva, Vladimir S.</creatorcontrib><creatorcontrib>Colas, Romain A.</creatorcontrib><creatorcontrib>Dalli, Jesmond</creatorcontrib><creatorcontrib>Malin, Stephen G.</creatorcontrib><creatorcontrib>Hult, Henrik</creatorcontrib><creatorcontrib>Arnardottir, Hildur</creatorcontrib><creatorcontrib>Olofsson, Peder S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caravaca, April S.</au><au>Gallina, Alessandro L.</au><au>Tarnawski, Laura</au><au>Shavva, Vladimir S.</au><au>Colas, Romain A.</au><au>Dalli, Jesmond</au><au>Malin, Stephen G.</au><au>Hult, Henrik</au><au>Arnardottir, Hildur</au><au>Olofsson, Peder S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-05-31</date><risdate>2022</risdate><volume>119</volume><issue>22</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Nonresolving inflammation underlies a range of chronic inflammatory diseases, and therapeutic acceleration of resolution of inflammation may improve outcomes. Neural reflexes regulate the intensity of inflammation (for example, through signals in the vagus nerve), but whether activation of the vagus nerve promotes the resolution of inflammation in vivo has been unknown. To investigate this, mice were subjected to electrical vagus nerve stimulation (VNS) or sham surgery at the cervical level followed by zymosan-induced peritonitis. The duration of inflammation resolution was significantly reduced and efferocytosis was significantly increased in mice treated with VNS as compared with sham. Lipid mediator (LM) metabololipidomics revealed that mice treated with VNS had higher levels of specialized proresolving mediators (SPMs), particularly from the omega-3 docosahexaenoic (DHA) and docosapentaenoic (n-3 DPA) metabolomes, in peritoneal exudates. VNS also shifted the ratio between proinflammatory and proresolving LMs toward a proresolving profile, but this effect by VNS was inverted in mice deficient in 12/15-lipoxgenase (Alox15), a key enzyme in this SPM biosynthesis. The significant VNS-mediated reduction of neutrophil numbers in peritoneal exudates was absent in mice deficient in the cholinergic α7-nicotinic acetylcholine receptor subunit (α7nAChR), an essential component of the inflammatory reflex. Thus, VNS increased local levels of SPM and accelerated resolution of inflammation in zymosan-induced peritonitis by a mechanism that involves Alox15 and requires the α7nAChR.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35622894</pmid><doi>10.1073/pnas.2023285119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6328-3640</orcidid><orcidid>https://orcid.org/0000-0001-7723-9579</orcidid><orcidid>https://orcid.org/0000-0002-5163-3946</orcidid><orcidid>https://orcid.org/0000-0002-0127-8309</orcidid><orcidid>https://orcid.org/0000-0001-9210-121X</orcidid><orcidid>https://orcid.org/0000-0003-3473-5948</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-05, Vol.119 (22), p.1-11
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_453145
source MEDLINE; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online; Free Full-Text Journals in Chemistry
subjects a7nAChR gene
Alox15 gene
Alox15 protein
alpha7 Nicotinic Acetylcholine Receptor
alpha7 Nicotinic Acetylcholine Receptor - genetics
animal
animal cell
animal experiment
animal model
animal tissue
Animals
Arachidonate 12-Lipoxygenase
Arachidonate 12-Lipoxygenase - genetics
Arachidonate 12-Lipoxygenase - metabolism
Arachidonate 15-Lipoxygenase
Arachidonate 15-Lipoxygenase - genetics
Arachidonate 15-Lipoxygenase - metabolism
autacoid
autonomic reflex
Biological Sciences
Biosynthesis
bungarotoxin receptor
cervonic acid
Cholinergics
controlled study
disease duration
Disease Models, Animal
docosapentaenoic acid
efferocytosis
ex vivo study
Exudates
Exudation
gene
genetics
In vivo methods and tests
in vivo study
Inflammation
Inflammation - therapy
Inflammation Mediators
Inflammation Mediators - metabolism
Inflammatory diseases
Leukocytes (neutrophilic)
lipid mediators
lipidomics
Lipids
male
Mice
Mice, Mutant Strains
mouse
Nerves
nervous system inflammation
neuroinflammation
nonhuman
Peritoneum
peritoneum exudate
Peritonitis
physiology
Reflexes
Stimulation
surgical technique
Vagus Nerve
Vagus Nerve - physiology
Vagus Nerve Stimulation
zymosan
title Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vagus%20nerve%20stimulation%20promotes%20resolution%20of%20inflammation%20by%20a%20mechanism%20that%20involves%20Alox15%20and%20requires%20the%20%CE%B17nAChR%20subunit&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Caravaca,%20April%20S.&rft.date=2022-05-31&rft.volume=119&rft.issue=22&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2023285119&rft_dat=%3Cjstor_swepu%3E27152017%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673629440&rft_id=info:pmid/35622894&rft_jstor_id=27152017&rfr_iscdi=true