Estrogen Receptor β (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens
Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with one of the highest male-to-female incidence ratios. The reason for this is not clear, but epidemiological as well as experimental data have suggested a role for estrogens, particularly acting through estrogen receptor β (ESR2). To study the E...
Gespeichert in:
Veröffentlicht in: | CANCERS 2022-06, Vol.14 (13), p.3098 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 3098 |
container_title | CANCERS |
container_volume | 14 |
creator | Huang, Dan Huang, Zhiqiang Indukuri, Rajitha Bangalore Revanna, Chandrashekar Berglund, Mattias Guan, Jiyu Yakimchuk, Konstantin Damdimopoulos, Anastasios Williams, Cecilia Okret, Sam |
description | Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with one of the highest male-to-female incidence ratios. The reason for this is not clear, but epidemiological as well as experimental data have suggested a role for estrogens, particularly acting through estrogen receptor β (ESR2). To study the ESR2 effects on MCL progression, MCL cells sensitive and resistant to the Bruton tyrosine kinase inhibitor ibrutinib were grafted to mice and treated with the ESR2-selective agonist diarylpropionitrile (DPN). The results showed that the DPN treatment of mice grafted with both ibrutinib-sensitive and -resistant MCL tumors resulted in impaired tumor progression. To identify the signaling pathways involved in the impaired tumor progression following ESR2 agonist treatment, the transcriptome and ESR2 binding to target genes were investigated by genome-wide chromatin immunoprecipitation in Granta-519 MCL tumors. DPN-regulated genes were enriched in several biological processes that included cell–cell adhesion, endothelial–mesenchymal transition, nuclear factor-kappaB signaling, vasculogenesis, lymphocyte proliferation, and apoptosis. In addition, downregulation of individual genes, such as SOX11 and MALAT1, that play a role in MCL progression was also observed. Furthermore, the data suggested an interplay between the lymphoma cells and the tumor microenvironment in response to the ESR2 agonist. In conclusion, the results clarify the mechanisms by which estrogens, via ESR2, impair MCL tumor progression and provide a possible explanation for the sex-dependent difference in incidence. Furthermore, targeting ESR2 with a selective agonist may be an additional option when considering the treatment of both ibrutinib-sensitive and -resistant MCL tumors. |
doi_str_mv | 10.3390/cancers14133098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_452267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687717829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-87780d14c8c77e90324d58587b6bd401ab82985e3bbc83ebd8c79ed8ec08d97b3</originalsourceid><addsrcrecordid>eNp9ks1u3CAUha2qUROlWXeL1E26cIPBNrCplE6nP9KMKiXTbhGGO2MSGxywU-VV-hh9kD5TGc0kSrIoG44uH0eXw82yNwV-T6nAZ1o5DSEWZUEpFvxFdkQwI3ldi_LlI32YncR4hdOitGA1e5Ud0orjkjN8lP2exzH4DTh0ARqG0Qf09w86nV9ekHdoFZSLOthU7gEpZ9CsDb5Xo3Xoo3XGug1KUqGlcmMHaAZdhxZ3_dAmCK2mPrktvYEumd-C6tDYwq6cX07DECDGrcUSdKucjX1Efo3uG4qvs4O16iKc7Pfj7Mfn-Wr2NV98__Jtdr7IdYnLMeeMcWyKUnPNGAhMSWkqXnHW1I0pcaEaTgSvgDaN5hQakzgBhoPG3AjW0OMs3_nGXzBMjRyC7VW4k15ZuS9dJwWyrAip2X_5T_bnufRhI6_HVtKiElgk_sOOT3APRoMbg-qeXHt64mwrN_5WClKnT6LJ4HRvEPzNBHGUvY06Za0c-ClKUqcMCpaemdC3z9ArPwWX4ttSlagFJThRZztKBx9jgPVDMwWW29GSz0aL_gNshMT6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685969320</pqid></control><display><type>article</type><title>Estrogen Receptor β (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Huang, Dan ; Huang, Zhiqiang ; Indukuri, Rajitha ; Bangalore Revanna, Chandrashekar ; Berglund, Mattias ; Guan, Jiyu ; Yakimchuk, Konstantin ; Damdimopoulos, Anastasios ; Williams, Cecilia ; Okret, Sam</creator><creatorcontrib>Huang, Dan ; Huang, Zhiqiang ; Indukuri, Rajitha ; Bangalore Revanna, Chandrashekar ; Berglund, Mattias ; Guan, Jiyu ; Yakimchuk, Konstantin ; Damdimopoulos, Anastasios ; Williams, Cecilia ; Okret, Sam</creatorcontrib><description>Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with one of the highest male-to-female incidence ratios. The reason for this is not clear, but epidemiological as well as experimental data have suggested a role for estrogens, particularly acting through estrogen receptor β (ESR2). To study the ESR2 effects on MCL progression, MCL cells sensitive and resistant to the Bruton tyrosine kinase inhibitor ibrutinib were grafted to mice and treated with the ESR2-selective agonist diarylpropionitrile (DPN). The results showed that the DPN treatment of mice grafted with both ibrutinib-sensitive and -resistant MCL tumors resulted in impaired tumor progression. To identify the signaling pathways involved in the impaired tumor progression following ESR2 agonist treatment, the transcriptome and ESR2 binding to target genes were investigated by genome-wide chromatin immunoprecipitation in Granta-519 MCL tumors. DPN-regulated genes were enriched in several biological processes that included cell–cell adhesion, endothelial–mesenchymal transition, nuclear factor-kappaB signaling, vasculogenesis, lymphocyte proliferation, and apoptosis. In addition, downregulation of individual genes, such as SOX11 and MALAT1, that play a role in MCL progression was also observed. Furthermore, the data suggested an interplay between the lymphoma cells and the tumor microenvironment in response to the ESR2 agonist. In conclusion, the results clarify the mechanisms by which estrogens, via ESR2, impair MCL tumor progression and provide a possible explanation for the sex-dependent difference in incidence. Furthermore, targeting ESR2 with a selective agonist may be an additional option when considering the treatment of both ibrutinib-sensitive and -resistant MCL tumors.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14133098</identifier><identifier>PMID: 35804870</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agonists ; Apoptosis ; Cell activation ; Cell adhesion ; Chromatin ; chromatin immunoprecipitation ; Enzyme inhibitors ; Epidemiology ; ESR2 ; estrogen receptor beta ; Estrogen receptors ; Estrogens ; Gene expression ; Genes ; Genomes ; ibrutinib ; Immunoprecipitation ; Kinases ; Ligands ; Lymphocytes ; Lymphoma ; macrophages ; Malignancy ; Mantle cell lymphoma ; Mesenchyme ; Non-Hodgkin's lymphoma ; Protein-tyrosine kinase ; RNA sequencing ; Sex differences ; Sex hormones ; Transcription factors ; Transcriptomes ; Tumor microenvironment ; Tumors ; xenograft</subject><ispartof>CANCERS, 2022-06, Vol.14 (13), p.3098</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-87780d14c8c77e90324d58587b6bd401ab82985e3bbc83ebd8c79ed8ec08d97b3</citedby><cites>FETCH-LOGICAL-c404t-87780d14c8c77e90324d58587b6bd401ab82985e3bbc83ebd8c79ed8ec08d97b3</cites><orcidid>0000-0002-0602-2062 ; 0000-0003-0822-1847 ; 0000-0001-5208-008X ; 0000-0001-6570-842X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264873/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264873/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315909$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:150201129$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Huang, Zhiqiang</creatorcontrib><creatorcontrib>Indukuri, Rajitha</creatorcontrib><creatorcontrib>Bangalore Revanna, Chandrashekar</creatorcontrib><creatorcontrib>Berglund, Mattias</creatorcontrib><creatorcontrib>Guan, Jiyu</creatorcontrib><creatorcontrib>Yakimchuk, Konstantin</creatorcontrib><creatorcontrib>Damdimopoulos, Anastasios</creatorcontrib><creatorcontrib>Williams, Cecilia</creatorcontrib><creatorcontrib>Okret, Sam</creatorcontrib><title>Estrogen Receptor β (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens</title><title>CANCERS</title><description>Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with one of the highest male-to-female incidence ratios. The reason for this is not clear, but epidemiological as well as experimental data have suggested a role for estrogens, particularly acting through estrogen receptor β (ESR2). To study the ESR2 effects on MCL progression, MCL cells sensitive and resistant to the Bruton tyrosine kinase inhibitor ibrutinib were grafted to mice and treated with the ESR2-selective agonist diarylpropionitrile (DPN). The results showed that the DPN treatment of mice grafted with both ibrutinib-sensitive and -resistant MCL tumors resulted in impaired tumor progression. To identify the signaling pathways involved in the impaired tumor progression following ESR2 agonist treatment, the transcriptome and ESR2 binding to target genes were investigated by genome-wide chromatin immunoprecipitation in Granta-519 MCL tumors. DPN-regulated genes were enriched in several biological processes that included cell–cell adhesion, endothelial–mesenchymal transition, nuclear factor-kappaB signaling, vasculogenesis, lymphocyte proliferation, and apoptosis. In addition, downregulation of individual genes, such as SOX11 and MALAT1, that play a role in MCL progression was also observed. Furthermore, the data suggested an interplay between the lymphoma cells and the tumor microenvironment in response to the ESR2 agonist. In conclusion, the results clarify the mechanisms by which estrogens, via ESR2, impair MCL tumor progression and provide a possible explanation for the sex-dependent difference in incidence. Furthermore, targeting ESR2 with a selective agonist may be an additional option when considering the treatment of both ibrutinib-sensitive and -resistant MCL tumors.</description><subject>Agonists</subject><subject>Apoptosis</subject><subject>Cell activation</subject><subject>Cell adhesion</subject><subject>Chromatin</subject><subject>chromatin immunoprecipitation</subject><subject>Enzyme inhibitors</subject><subject>Epidemiology</subject><subject>ESR2</subject><subject>estrogen receptor beta</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>ibrutinib</subject><subject>Immunoprecipitation</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Lymphoma</subject><subject>macrophages</subject><subject>Malignancy</subject><subject>Mantle cell lymphoma</subject><subject>Mesenchyme</subject><subject>Non-Hodgkin's lymphoma</subject><subject>Protein-tyrosine kinase</subject><subject>RNA sequencing</subject><subject>Sex differences</subject><subject>Sex hormones</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><subject>xenograft</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNp9ks1u3CAUha2qUROlWXeL1E26cIPBNrCplE6nP9KMKiXTbhGGO2MSGxywU-VV-hh9kD5TGc0kSrIoG44uH0eXw82yNwV-T6nAZ1o5DSEWZUEpFvxFdkQwI3ldi_LlI32YncR4hdOitGA1e5Ud0orjkjN8lP2exzH4DTh0ARqG0Qf09w86nV9ekHdoFZSLOthU7gEpZ9CsDb5Xo3Xoo3XGug1KUqGlcmMHaAZdhxZ3_dAmCK2mPrktvYEumd-C6tDYwq6cX07DECDGrcUSdKucjX1Efo3uG4qvs4O16iKc7Pfj7Mfn-Wr2NV98__Jtdr7IdYnLMeeMcWyKUnPNGAhMSWkqXnHW1I0pcaEaTgSvgDaN5hQakzgBhoPG3AjW0OMs3_nGXzBMjRyC7VW4k15ZuS9dJwWyrAip2X_5T_bnufRhI6_HVtKiElgk_sOOT3APRoMbg-qeXHt64mwrN_5WClKnT6LJ4HRvEPzNBHGUvY06Za0c-ClKUqcMCpaemdC3z9ArPwWX4ttSlagFJThRZztKBx9jgPVDMwWW29GSz0aL_gNshMT6</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Huang, Dan</creator><creator>Huang, Zhiqiang</creator><creator>Indukuri, Rajitha</creator><creator>Bangalore Revanna, Chandrashekar</creator><creator>Berglund, Mattias</creator><creator>Guan, Jiyu</creator><creator>Yakimchuk, Konstantin</creator><creator>Damdimopoulos, Anastasios</creator><creator>Williams, Cecilia</creator><creator>Okret, Sam</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-0602-2062</orcidid><orcidid>https://orcid.org/0000-0003-0822-1847</orcidid><orcidid>https://orcid.org/0000-0001-5208-008X</orcidid><orcidid>https://orcid.org/0000-0001-6570-842X</orcidid></search><sort><creationdate>20220624</creationdate><title>Estrogen Receptor β (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens</title><author>Huang, Dan ; Huang, Zhiqiang ; Indukuri, Rajitha ; Bangalore Revanna, Chandrashekar ; Berglund, Mattias ; Guan, Jiyu ; Yakimchuk, Konstantin ; Damdimopoulos, Anastasios ; Williams, Cecilia ; Okret, Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-87780d14c8c77e90324d58587b6bd401ab82985e3bbc83ebd8c79ed8ec08d97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agonists</topic><topic>Apoptosis</topic><topic>Cell activation</topic><topic>Cell adhesion</topic><topic>Chromatin</topic><topic>chromatin immunoprecipitation</topic><topic>Enzyme inhibitors</topic><topic>Epidemiology</topic><topic>ESR2</topic><topic>estrogen receptor beta</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>ibrutinib</topic><topic>Immunoprecipitation</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Lymphoma</topic><topic>macrophages</topic><topic>Malignancy</topic><topic>Mantle cell lymphoma</topic><topic>Mesenchyme</topic><topic>Non-Hodgkin's lymphoma</topic><topic>Protein-tyrosine kinase</topic><topic>RNA sequencing</topic><topic>Sex differences</topic><topic>Sex hormones</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><topic>xenograft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Huang, Zhiqiang</creatorcontrib><creatorcontrib>Indukuri, Rajitha</creatorcontrib><creatorcontrib>Bangalore Revanna, Chandrashekar</creatorcontrib><creatorcontrib>Berglund, Mattias</creatorcontrib><creatorcontrib>Guan, Jiyu</creatorcontrib><creatorcontrib>Yakimchuk, Konstantin</creatorcontrib><creatorcontrib>Damdimopoulos, Anastasios</creatorcontrib><creatorcontrib>Williams, Cecilia</creatorcontrib><creatorcontrib>Okret, Sam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>CANCERS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Dan</au><au>Huang, Zhiqiang</au><au>Indukuri, Rajitha</au><au>Bangalore Revanna, Chandrashekar</au><au>Berglund, Mattias</au><au>Guan, Jiyu</au><au>Yakimchuk, Konstantin</au><au>Damdimopoulos, Anastasios</au><au>Williams, Cecilia</au><au>Okret, Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estrogen Receptor β (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens</atitle><jtitle>CANCERS</jtitle><date>2022-06-24</date><risdate>2022</risdate><volume>14</volume><issue>13</issue><spage>3098</spage><pages>3098-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with one of the highest male-to-female incidence ratios. The reason for this is not clear, but epidemiological as well as experimental data have suggested a role for estrogens, particularly acting through estrogen receptor β (ESR2). To study the ESR2 effects on MCL progression, MCL cells sensitive and resistant to the Bruton tyrosine kinase inhibitor ibrutinib were grafted to mice and treated with the ESR2-selective agonist diarylpropionitrile (DPN). The results showed that the DPN treatment of mice grafted with both ibrutinib-sensitive and -resistant MCL tumors resulted in impaired tumor progression. To identify the signaling pathways involved in the impaired tumor progression following ESR2 agonist treatment, the transcriptome and ESR2 binding to target genes were investigated by genome-wide chromatin immunoprecipitation in Granta-519 MCL tumors. DPN-regulated genes were enriched in several biological processes that included cell–cell adhesion, endothelial–mesenchymal transition, nuclear factor-kappaB signaling, vasculogenesis, lymphocyte proliferation, and apoptosis. In addition, downregulation of individual genes, such as SOX11 and MALAT1, that play a role in MCL progression was also observed. Furthermore, the data suggested an interplay between the lymphoma cells and the tumor microenvironment in response to the ESR2 agonist. In conclusion, the results clarify the mechanisms by which estrogens, via ESR2, impair MCL tumor progression and provide a possible explanation for the sex-dependent difference in incidence. Furthermore, targeting ESR2 with a selective agonist may be an additional option when considering the treatment of both ibrutinib-sensitive and -resistant MCL tumors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35804870</pmid><doi>10.3390/cancers14133098</doi><orcidid>https://orcid.org/0000-0002-0602-2062</orcidid><orcidid>https://orcid.org/0000-0003-0822-1847</orcidid><orcidid>https://orcid.org/0000-0001-5208-008X</orcidid><orcidid>https://orcid.org/0000-0001-6570-842X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | CANCERS, 2022-06, Vol.14 (13), p.3098 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_452267 |
source | MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; SWEPUB Freely available online; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Agonists Apoptosis Cell activation Cell adhesion Chromatin chromatin immunoprecipitation Enzyme inhibitors Epidemiology ESR2 estrogen receptor beta Estrogen receptors Estrogens Gene expression Genes Genomes ibrutinib Immunoprecipitation Kinases Ligands Lymphocytes Lymphoma macrophages Malignancy Mantle cell lymphoma Mesenchyme Non-Hodgkin's lymphoma Protein-tyrosine kinase RNA sequencing Sex differences Sex hormones Transcription factors Transcriptomes Tumor microenvironment Tumors xenograft |
title | Estrogen Receptor β (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estrogen%20Receptor%20%CE%B2%20(ESR2)%20Transcriptome%20and%20Chromatin%20Binding%20in%20a%20Mantle%20Cell%20Lymphoma%20Tumor%20Model%20Reveal%20the%20Tumor-Suppressing%20Mechanisms%20of%20Estrogens&rft.jtitle=CANCERS&rft.au=Huang,%20Dan&rft.date=2022-06-24&rft.volume=14&rft.issue=13&rft.spage=3098&rft.pages=3098-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14133098&rft_dat=%3Cproquest_swepu%3E2687717829%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685969320&rft_id=info:pmid/35804870&rfr_iscdi=true |