Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients
Background The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data. Methods We built a cohort selecting...
Gespeichert in:
Veröffentlicht in: | Neurological sciences 2022, Vol.43 (10), p.5899-5908 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5908 |
---|---|
container_issue | 10 |
container_start_page | 5899 |
container_title | Neurological sciences |
container_volume | 43 |
creator | Grande, Giulia Vetrano, Davide L. Marconi, Ettore Bianchini, Elisa Cricelli, Iacopo Lovato, Valeria Guglielmini, Luisa Taddeo, Daiana Cappa, Stefano F. Cricelli, Claudio Lapi, Francesco |
description | Background
The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data.
Methods
We built a cohort selecting 199,978 primary care patients 60 + part of the Health Search Database between January 2002 and 2009, followed up until 2019 to detect incident AD cases. The cohort was randomly divided into a derivation and validation sub-cohort. To identify AD and non-AD cases, we applied a clinical algorithm that involved two clinicians. According to a nested case–control design, AD cases were matched with up to 10 controls based on age, sex, calendar period, and follow-up duration. Using the derivation sub-cohort, 32 potential AD predictors (sociodemographic, clinical, drug-related, etc.) were tested in a logistic regression and selected to build a prediction model. The predictive performance of this model was tested on the validation sub-cohort by mean of explained variation, calibration, and discrimination measurements.
Results
We identified 3223 AD cases. The presence of memory disorders, hallucinations, anxiety, and depression and the use of NSAIDs were associated with future AD. The combination of the predictors allowed the production of a predictive score that showed an explained variation (pseudo-
R
2
) for AD occurrence of 13.4%, good calibration parameters, and an area under the curve of 0.73 (95% CI: 0.71–0.75). In accordance with this model, 7% of patients presented with a high-risk score for developing AD over 15 years.
Conclusion
An automated risk score for AD based on routinely collected clinical data is a promising tool for the early case detection and timely management of patients by the general practitioners. |
doi_str_mv | 10.1007/s10072-022-06258-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_452067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691460267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-8c3cae00b6d3356b47a7e1695fd5b10c90064c84bcfa641a069c8d856ebc9a403</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEEqX0BVhZYsOCwLXjvyxHLbRIlbqBbi3HuRncJvFgJ62Gp8fpBCohtQvbV_Z3jo_sWxTvKHyiAOpzWmZWAstDMqFL9aI4oqKGsuJKv1xrqhV_XbxJ6QYAKKfVUbE_wzvsw27AcSJ2bIkfJ4yj7cmd7X1rJx9GEjpiyS6G7RjS5B0ZQos96UIkVJR7tJFEn24XbNP__ol-wEhaXCy9zYZZ6gcb98TZiGSXPfNJelu86myf8GRdj4sfX798P70oL6_Ov51uLkvHlZpK7SpnEaCRbVUJ2XBlFVJZi64VDQVXA0juNG9cZyWnFmTtdKuFxMbVlkN1XJQH33SPu7kxaxgTrDfr1m2u0HDBQKrM10_y-Q3aR9FfIRXARA5bZe3HJ7Vn_npjQtyaNBsGmmuZ8Q8HPPv-mjFNZvDJYd_bEcOcDJM15RLYQ6r3_6E3YV7-KVMqf2XNKCz3swPlYkgpYvcvAQWztIg5NIrJjWIeGsUs1tUaOsPjFuOj9TOqP7lYwtU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714192103</pqid></control><display><type>article</type><title>Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients</title><source>SpringerNature Journals</source><creator>Grande, Giulia ; Vetrano, Davide L. ; Marconi, Ettore ; Bianchini, Elisa ; Cricelli, Iacopo ; Lovato, Valeria ; Guglielmini, Luisa ; Taddeo, Daiana ; Cappa, Stefano F. ; Cricelli, Claudio ; Lapi, Francesco</creator><creatorcontrib>Grande, Giulia ; Vetrano, Davide L. ; Marconi, Ettore ; Bianchini, Elisa ; Cricelli, Iacopo ; Lovato, Valeria ; Guglielmini, Luisa ; Taddeo, Daiana ; Cappa, Stefano F. ; Cricelli, Claudio ; Lapi, Francesco</creatorcontrib><description>Background
The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data.
Methods
We built a cohort selecting 199,978 primary care patients 60 + part of the Health Search Database between January 2002 and 2009, followed up until 2019 to detect incident AD cases. The cohort was randomly divided into a derivation and validation sub-cohort. To identify AD and non-AD cases, we applied a clinical algorithm that involved two clinicians. According to a nested case–control design, AD cases were matched with up to 10 controls based on age, sex, calendar period, and follow-up duration. Using the derivation sub-cohort, 32 potential AD predictors (sociodemographic, clinical, drug-related, etc.) were tested in a logistic regression and selected to build a prediction model. The predictive performance of this model was tested on the validation sub-cohort by mean of explained variation, calibration, and discrimination measurements.
Results
We identified 3223 AD cases. The presence of memory disorders, hallucinations, anxiety, and depression and the use of NSAIDs were associated with future AD. The combination of the predictors allowed the production of a predictive score that showed an explained variation (pseudo-
R
2
) for AD occurrence of 13.4%, good calibration parameters, and an area under the curve of 0.73 (95% CI: 0.71–0.75). In accordance with this model, 7% of patients presented with a high-risk score for developing AD over 15 years.
Conclusion
An automated risk score for AD based on routinely collected clinical data is a promising tool for the early case detection and timely management of patients by the general practitioners.</description><identifier>ISSN: 1590-1874</identifier><identifier>ISSN: 1590-3478</identifier><identifier>EISSN: 1590-3478</identifier><identifier>DOI: 10.1007/s10072-022-06258-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alzheimer's disease ; Dementia ; Dementia disorders ; Hallucinations ; Medicin och hälsovetenskap ; Medicine ; Medicine & Public Health ; Neurodegenerative diseases ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Nonsteroidal anti-inflammatory drugs ; Original Article ; Patients ; Prediction ; Prediction models ; Primary care ; Psychiatry</subject><ispartof>Neurological sciences, 2022, Vol.43 (10), p.5899-5908</ispartof><rights>Fondazione Società Italiana di Neurologia 2022</rights><rights>Fondazione Società Italiana di Neurologia 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-8c3cae00b6d3356b47a7e1695fd5b10c90064c84bcfa641a069c8d856ebc9a403</citedby><cites>FETCH-LOGICAL-c477t-8c3cae00b6d3356b47a7e1695fd5b10c90064c84bcfa641a069c8d856ebc9a403</cites><orcidid>0000-0002-4342-9128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10072-022-06258-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10072-022-06258-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-208486$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:150254773$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Grande, Giulia</creatorcontrib><creatorcontrib>Vetrano, Davide L.</creatorcontrib><creatorcontrib>Marconi, Ettore</creatorcontrib><creatorcontrib>Bianchini, Elisa</creatorcontrib><creatorcontrib>Cricelli, Iacopo</creatorcontrib><creatorcontrib>Lovato, Valeria</creatorcontrib><creatorcontrib>Guglielmini, Luisa</creatorcontrib><creatorcontrib>Taddeo, Daiana</creatorcontrib><creatorcontrib>Cappa, Stefano F.</creatorcontrib><creatorcontrib>Cricelli, Claudio</creatorcontrib><creatorcontrib>Lapi, Francesco</creatorcontrib><title>Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients</title><title>Neurological sciences</title><addtitle>Neurol Sci</addtitle><description>Background
The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data.
Methods
We built a cohort selecting 199,978 primary care patients 60 + part of the Health Search Database between January 2002 and 2009, followed up until 2019 to detect incident AD cases. The cohort was randomly divided into a derivation and validation sub-cohort. To identify AD and non-AD cases, we applied a clinical algorithm that involved two clinicians. According to a nested case–control design, AD cases were matched with up to 10 controls based on age, sex, calendar period, and follow-up duration. Using the derivation sub-cohort, 32 potential AD predictors (sociodemographic, clinical, drug-related, etc.) were tested in a logistic regression and selected to build a prediction model. The predictive performance of this model was tested on the validation sub-cohort by mean of explained variation, calibration, and discrimination measurements.
Results
We identified 3223 AD cases. The presence of memory disorders, hallucinations, anxiety, and depression and the use of NSAIDs were associated with future AD. The combination of the predictors allowed the production of a predictive score that showed an explained variation (pseudo-
R
2
) for AD occurrence of 13.4%, good calibration parameters, and an area under the curve of 0.73 (95% CI: 0.71–0.75). In accordance with this model, 7% of patients presented with a high-risk score for developing AD over 15 years.
Conclusion
An automated risk score for AD based on routinely collected clinical data is a promising tool for the early case detection and timely management of patients by the general practitioners.</description><subject>Alzheimer's disease</subject><subject>Dementia</subject><subject>Dementia disorders</subject><subject>Hallucinations</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Original Article</subject><subject>Patients</subject><subject>Prediction</subject><subject>Prediction models</subject><subject>Primary care</subject><subject>Psychiatry</subject><issn>1590-1874</issn><issn>1590-3478</issn><issn>1590-3478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ks1u1DAUhSMEEqX0BVhZYsOCwLXjvyxHLbRIlbqBbi3HuRncJvFgJ62Gp8fpBCohtQvbV_Z3jo_sWxTvKHyiAOpzWmZWAstDMqFL9aI4oqKGsuJKv1xrqhV_XbxJ6QYAKKfVUbE_wzvsw27AcSJ2bIkfJ4yj7cmd7X1rJx9GEjpiyS6G7RjS5B0ZQos96UIkVJR7tJFEn24XbNP__ol-wEhaXCy9zYZZ6gcb98TZiGSXPfNJelu86myf8GRdj4sfX798P70oL6_Ov51uLkvHlZpK7SpnEaCRbVUJ2XBlFVJZi64VDQVXA0juNG9cZyWnFmTtdKuFxMbVlkN1XJQH33SPu7kxaxgTrDfr1m2u0HDBQKrM10_y-Q3aR9FfIRXARA5bZe3HJ7Vn_npjQtyaNBsGmmuZ8Q8HPPv-mjFNZvDJYd_bEcOcDJM15RLYQ6r3_6E3YV7-KVMqf2XNKCz3swPlYkgpYvcvAQWztIg5NIrJjWIeGsUs1tUaOsPjFuOj9TOqP7lYwtU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Grande, Giulia</creator><creator>Vetrano, Davide L.</creator><creator>Marconi, Ettore</creator><creator>Bianchini, Elisa</creator><creator>Cricelli, Iacopo</creator><creator>Lovato, Valeria</creator><creator>Guglielmini, Luisa</creator><creator>Taddeo, Daiana</creator><creator>Cappa, Stefano F.</creator><creator>Cricelli, Claudio</creator><creator>Lapi, Francesco</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9-</scope><scope>K9.</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0002-4342-9128</orcidid></search><sort><creationdate>2022</creationdate><title>Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients</title><author>Grande, Giulia ; Vetrano, Davide L. ; Marconi, Ettore ; Bianchini, Elisa ; Cricelli, Iacopo ; Lovato, Valeria ; Guglielmini, Luisa ; Taddeo, Daiana ; Cappa, Stefano F. ; Cricelli, Claudio ; Lapi, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-8c3cae00b6d3356b47a7e1695fd5b10c90064c84bcfa641a069c8d856ebc9a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alzheimer's disease</topic><topic>Dementia</topic><topic>Dementia disorders</topic><topic>Hallucinations</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Original Article</topic><topic>Patients</topic><topic>Prediction</topic><topic>Prediction models</topic><topic>Primary care</topic><topic>Psychiatry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grande, Giulia</creatorcontrib><creatorcontrib>Vetrano, Davide L.</creatorcontrib><creatorcontrib>Marconi, Ettore</creatorcontrib><creatorcontrib>Bianchini, Elisa</creatorcontrib><creatorcontrib>Cricelli, Iacopo</creatorcontrib><creatorcontrib>Lovato, Valeria</creatorcontrib><creatorcontrib>Guglielmini, Luisa</creatorcontrib><creatorcontrib>Taddeo, Daiana</creatorcontrib><creatorcontrib>Cappa, Stefano F.</creatorcontrib><creatorcontrib>Cricelli, Claudio</creatorcontrib><creatorcontrib>Lapi, Francesco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Neurological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grande, Giulia</au><au>Vetrano, Davide L.</au><au>Marconi, Ettore</au><au>Bianchini, Elisa</au><au>Cricelli, Iacopo</au><au>Lovato, Valeria</au><au>Guglielmini, Luisa</au><au>Taddeo, Daiana</au><au>Cappa, Stefano F.</au><au>Cricelli, Claudio</au><au>Lapi, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients</atitle><jtitle>Neurological sciences</jtitle><stitle>Neurol Sci</stitle><date>2022</date><risdate>2022</risdate><volume>43</volume><issue>10</issue><spage>5899</spage><epage>5908</epage><pages>5899-5908</pages><issn>1590-1874</issn><issn>1590-3478</issn><eissn>1590-3478</eissn><abstract>Background
The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data.
Methods
We built a cohort selecting 199,978 primary care patients 60 + part of the Health Search Database between January 2002 and 2009, followed up until 2019 to detect incident AD cases. The cohort was randomly divided into a derivation and validation sub-cohort. To identify AD and non-AD cases, we applied a clinical algorithm that involved two clinicians. According to a nested case–control design, AD cases were matched with up to 10 controls based on age, sex, calendar period, and follow-up duration. Using the derivation sub-cohort, 32 potential AD predictors (sociodemographic, clinical, drug-related, etc.) were tested in a logistic regression and selected to build a prediction model. The predictive performance of this model was tested on the validation sub-cohort by mean of explained variation, calibration, and discrimination measurements.
Results
We identified 3223 AD cases. The presence of memory disorders, hallucinations, anxiety, and depression and the use of NSAIDs were associated with future AD. The combination of the predictors allowed the production of a predictive score that showed an explained variation (pseudo-
R
2
) for AD occurrence of 13.4%, good calibration parameters, and an area under the curve of 0.73 (95% CI: 0.71–0.75). In accordance with this model, 7% of patients presented with a high-risk score for developing AD over 15 years.
Conclusion
An automated risk score for AD based on routinely collected clinical data is a promising tool for the early case detection and timely management of patients by the general practitioners.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10072-022-06258-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4342-9128</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1590-1874 |
ispartof | Neurological sciences, 2022, Vol.43 (10), p.5899-5908 |
issn | 1590-1874 1590-3478 1590-3478 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_452067 |
source | SpringerNature Journals |
subjects | Alzheimer's disease Dementia Dementia disorders Hallucinations Medicin och hälsovetenskap Medicine Medicine & Public Health Neurodegenerative diseases Neurology Neuroradiology Neurosciences Neurosurgery Nonsteroidal anti-inflammatory drugs Original Article Patients Prediction Prediction models Primary care Psychiatry |
title | Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20internal%20validation%20of%20a%20prognostic%20model%20for%2015-year%20risk%20of%20Alzheimer%20dementia%20in%20primary%20care%20patients&rft.jtitle=Neurological%20sciences&rft.au=Grande,%20Giulia&rft.date=2022&rft.volume=43&rft.issue=10&rft.spage=5899&rft.epage=5908&rft.pages=5899-5908&rft.issn=1590-1874&rft.eissn=1590-3478&rft_id=info:doi/10.1007/s10072-022-06258-7&rft_dat=%3Cproquest_swepu%3E2691460267%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714192103&rft_id=info:pmid/&rfr_iscdi=true |