Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients

Background The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data. Methods We built a cohort selecting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurological sciences 2022, Vol.43 (10), p.5899-5908
Hauptverfasser: Grande, Giulia, Vetrano, Davide L., Marconi, Ettore, Bianchini, Elisa, Cricelli, Iacopo, Lovato, Valeria, Guglielmini, Luisa, Taddeo, Daiana, Cappa, Stefano F., Cricelli, Claudio, Lapi, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5908
container_issue 10
container_start_page 5899
container_title Neurological sciences
container_volume 43
creator Grande, Giulia
Vetrano, Davide L.
Marconi, Ettore
Bianchini, Elisa
Cricelli, Iacopo
Lovato, Valeria
Guglielmini, Luisa
Taddeo, Daiana
Cappa, Stefano F.
Cricelli, Claudio
Lapi, Francesco
description Background The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data. Methods We built a cohort selecting 199,978 primary care patients 60 + part of the Health Search Database between January 2002 and 2009, followed up until 2019 to detect incident AD cases. The cohort was randomly divided into a derivation and validation sub-cohort. To identify AD and non-AD cases, we applied a clinical algorithm that involved two clinicians. According to a nested case–control design, AD cases were matched with up to 10 controls based on age, sex, calendar period, and follow-up duration. Using the derivation sub-cohort, 32 potential AD predictors (sociodemographic, clinical, drug-related, etc.) were tested in a logistic regression and selected to build a prediction model. The predictive performance of this model was tested on the validation sub-cohort by mean of explained variation, calibration, and discrimination measurements. Results We identified 3223 AD cases. The presence of memory disorders, hallucinations, anxiety, and depression and the use of NSAIDs were associated with future AD. The combination of the predictors allowed the production of a predictive score that showed an explained variation (pseudo- R 2 ) for AD occurrence of 13.4%, good calibration parameters, and an area under the curve of 0.73 (95% CI: 0.71–0.75). In accordance with this model, 7% of patients presented with a high-risk score for developing AD over 15 years. Conclusion An automated risk score for AD based on routinely collected clinical data is a promising tool for the early case detection and timely management of patients by the general practitioners.
doi_str_mv 10.1007/s10072-022-06258-7
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_452067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691460267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-8c3cae00b6d3356b47a7e1695fd5b10c90064c84bcfa641a069c8d856ebc9a403</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEEqX0BVhZYsOCwLXjvyxHLbRIlbqBbi3HuRncJvFgJ62Gp8fpBCohtQvbV_Z3jo_sWxTvKHyiAOpzWmZWAstDMqFL9aI4oqKGsuJKv1xrqhV_XbxJ6QYAKKfVUbE_wzvsw27AcSJ2bIkfJ4yj7cmd7X1rJx9GEjpiyS6G7RjS5B0ZQos96UIkVJR7tJFEn24XbNP__ol-wEhaXCy9zYZZ6gcb98TZiGSXPfNJelu86myf8GRdj4sfX798P70oL6_Ov51uLkvHlZpK7SpnEaCRbVUJ2XBlFVJZi64VDQVXA0juNG9cZyWnFmTtdKuFxMbVlkN1XJQH33SPu7kxaxgTrDfr1m2u0HDBQKrM10_y-Q3aR9FfIRXARA5bZe3HJ7Vn_npjQtyaNBsGmmuZ8Q8HPPv-mjFNZvDJYd_bEcOcDJM15RLYQ6r3_6E3YV7-KVMqf2XNKCz3swPlYkgpYvcvAQWztIg5NIrJjWIeGsUs1tUaOsPjFuOj9TOqP7lYwtU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714192103</pqid></control><display><type>article</type><title>Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients</title><source>SpringerNature Journals</source><creator>Grande, Giulia ; Vetrano, Davide L. ; Marconi, Ettore ; Bianchini, Elisa ; Cricelli, Iacopo ; Lovato, Valeria ; Guglielmini, Luisa ; Taddeo, Daiana ; Cappa, Stefano F. ; Cricelli, Claudio ; Lapi, Francesco</creator><creatorcontrib>Grande, Giulia ; Vetrano, Davide L. ; Marconi, Ettore ; Bianchini, Elisa ; Cricelli, Iacopo ; Lovato, Valeria ; Guglielmini, Luisa ; Taddeo, Daiana ; Cappa, Stefano F. ; Cricelli, Claudio ; Lapi, Francesco</creatorcontrib><description>Background The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data. Methods We built a cohort selecting 199,978 primary care patients 60 + part of the Health Search Database between January 2002 and 2009, followed up until 2019 to detect incident AD cases. The cohort was randomly divided into a derivation and validation sub-cohort. To identify AD and non-AD cases, we applied a clinical algorithm that involved two clinicians. According to a nested case–control design, AD cases were matched with up to 10 controls based on age, sex, calendar period, and follow-up duration. Using the derivation sub-cohort, 32 potential AD predictors (sociodemographic, clinical, drug-related, etc.) were tested in a logistic regression and selected to build a prediction model. The predictive performance of this model was tested on the validation sub-cohort by mean of explained variation, calibration, and discrimination measurements. Results We identified 3223 AD cases. The presence of memory disorders, hallucinations, anxiety, and depression and the use of NSAIDs were associated with future AD. The combination of the predictors allowed the production of a predictive score that showed an explained variation (pseudo- R 2 ) for AD occurrence of 13.4%, good calibration parameters, and an area under the curve of 0.73 (95% CI: 0.71–0.75). In accordance with this model, 7% of patients presented with a high-risk score for developing AD over 15 years. Conclusion An automated risk score for AD based on routinely collected clinical data is a promising tool for the early case detection and timely management of patients by the general practitioners.</description><identifier>ISSN: 1590-1874</identifier><identifier>ISSN: 1590-3478</identifier><identifier>EISSN: 1590-3478</identifier><identifier>DOI: 10.1007/s10072-022-06258-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alzheimer's disease ; Dementia ; Dementia disorders ; Hallucinations ; Medicin och hälsovetenskap ; Medicine ; Medicine &amp; Public Health ; Neurodegenerative diseases ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Nonsteroidal anti-inflammatory drugs ; Original Article ; Patients ; Prediction ; Prediction models ; Primary care ; Psychiatry</subject><ispartof>Neurological sciences, 2022, Vol.43 (10), p.5899-5908</ispartof><rights>Fondazione Società Italiana di Neurologia 2022</rights><rights>Fondazione Società Italiana di Neurologia 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-8c3cae00b6d3356b47a7e1695fd5b10c90064c84bcfa641a069c8d856ebc9a403</citedby><cites>FETCH-LOGICAL-c477t-8c3cae00b6d3356b47a7e1695fd5b10c90064c84bcfa641a069c8d856ebc9a403</cites><orcidid>0000-0002-4342-9128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10072-022-06258-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10072-022-06258-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-208486$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:150254773$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Grande, Giulia</creatorcontrib><creatorcontrib>Vetrano, Davide L.</creatorcontrib><creatorcontrib>Marconi, Ettore</creatorcontrib><creatorcontrib>Bianchini, Elisa</creatorcontrib><creatorcontrib>Cricelli, Iacopo</creatorcontrib><creatorcontrib>Lovato, Valeria</creatorcontrib><creatorcontrib>Guglielmini, Luisa</creatorcontrib><creatorcontrib>Taddeo, Daiana</creatorcontrib><creatorcontrib>Cappa, Stefano F.</creatorcontrib><creatorcontrib>Cricelli, Claudio</creatorcontrib><creatorcontrib>Lapi, Francesco</creatorcontrib><title>Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients</title><title>Neurological sciences</title><addtitle>Neurol Sci</addtitle><description>Background The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data. Methods We built a cohort selecting 199,978 primary care patients 60 + part of the Health Search Database between January 2002 and 2009, followed up until 2019 to detect incident AD cases. The cohort was randomly divided into a derivation and validation sub-cohort. To identify AD and non-AD cases, we applied a clinical algorithm that involved two clinicians. According to a nested case–control design, AD cases were matched with up to 10 controls based on age, sex, calendar period, and follow-up duration. Using the derivation sub-cohort, 32 potential AD predictors (sociodemographic, clinical, drug-related, etc.) were tested in a logistic regression and selected to build a prediction model. The predictive performance of this model was tested on the validation sub-cohort by mean of explained variation, calibration, and discrimination measurements. Results We identified 3223 AD cases. The presence of memory disorders, hallucinations, anxiety, and depression and the use of NSAIDs were associated with future AD. The combination of the predictors allowed the production of a predictive score that showed an explained variation (pseudo- R 2 ) for AD occurrence of 13.4%, good calibration parameters, and an area under the curve of 0.73 (95% CI: 0.71–0.75). In accordance with this model, 7% of patients presented with a high-risk score for developing AD over 15 years. Conclusion An automated risk score for AD based on routinely collected clinical data is a promising tool for the early case detection and timely management of patients by the general practitioners.</description><subject>Alzheimer's disease</subject><subject>Dementia</subject><subject>Dementia disorders</subject><subject>Hallucinations</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Original Article</subject><subject>Patients</subject><subject>Prediction</subject><subject>Prediction models</subject><subject>Primary care</subject><subject>Psychiatry</subject><issn>1590-1874</issn><issn>1590-3478</issn><issn>1590-3478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ks1u1DAUhSMEEqX0BVhZYsOCwLXjvyxHLbRIlbqBbi3HuRncJvFgJ62Gp8fpBCohtQvbV_Z3jo_sWxTvKHyiAOpzWmZWAstDMqFL9aI4oqKGsuJKv1xrqhV_XbxJ6QYAKKfVUbE_wzvsw27AcSJ2bIkfJ4yj7cmd7X1rJx9GEjpiyS6G7RjS5B0ZQos96UIkVJR7tJFEn24XbNP__ol-wEhaXCy9zYZZ6gcb98TZiGSXPfNJelu86myf8GRdj4sfX798P70oL6_Ov51uLkvHlZpK7SpnEaCRbVUJ2XBlFVJZi64VDQVXA0juNG9cZyWnFmTtdKuFxMbVlkN1XJQH33SPu7kxaxgTrDfr1m2u0HDBQKrM10_y-Q3aR9FfIRXARA5bZe3HJ7Vn_npjQtyaNBsGmmuZ8Q8HPPv-mjFNZvDJYd_bEcOcDJM15RLYQ6r3_6E3YV7-KVMqf2XNKCz3swPlYkgpYvcvAQWztIg5NIrJjWIeGsUs1tUaOsPjFuOj9TOqP7lYwtU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Grande, Giulia</creator><creator>Vetrano, Davide L.</creator><creator>Marconi, Ettore</creator><creator>Bianchini, Elisa</creator><creator>Cricelli, Iacopo</creator><creator>Lovato, Valeria</creator><creator>Guglielmini, Luisa</creator><creator>Taddeo, Daiana</creator><creator>Cappa, Stefano F.</creator><creator>Cricelli, Claudio</creator><creator>Lapi, Francesco</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9-</scope><scope>K9.</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0002-4342-9128</orcidid></search><sort><creationdate>2022</creationdate><title>Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients</title><author>Grande, Giulia ; Vetrano, Davide L. ; Marconi, Ettore ; Bianchini, Elisa ; Cricelli, Iacopo ; Lovato, Valeria ; Guglielmini, Luisa ; Taddeo, Daiana ; Cappa, Stefano F. ; Cricelli, Claudio ; Lapi, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-8c3cae00b6d3356b47a7e1695fd5b10c90064c84bcfa641a069c8d856ebc9a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alzheimer's disease</topic><topic>Dementia</topic><topic>Dementia disorders</topic><topic>Hallucinations</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Original Article</topic><topic>Patients</topic><topic>Prediction</topic><topic>Prediction models</topic><topic>Primary care</topic><topic>Psychiatry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grande, Giulia</creatorcontrib><creatorcontrib>Vetrano, Davide L.</creatorcontrib><creatorcontrib>Marconi, Ettore</creatorcontrib><creatorcontrib>Bianchini, Elisa</creatorcontrib><creatorcontrib>Cricelli, Iacopo</creatorcontrib><creatorcontrib>Lovato, Valeria</creatorcontrib><creatorcontrib>Guglielmini, Luisa</creatorcontrib><creatorcontrib>Taddeo, Daiana</creatorcontrib><creatorcontrib>Cappa, Stefano F.</creatorcontrib><creatorcontrib>Cricelli, Claudio</creatorcontrib><creatorcontrib>Lapi, Francesco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Neurological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grande, Giulia</au><au>Vetrano, Davide L.</au><au>Marconi, Ettore</au><au>Bianchini, Elisa</au><au>Cricelli, Iacopo</au><au>Lovato, Valeria</au><au>Guglielmini, Luisa</au><au>Taddeo, Daiana</au><au>Cappa, Stefano F.</au><au>Cricelli, Claudio</au><au>Lapi, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients</atitle><jtitle>Neurological sciences</jtitle><stitle>Neurol Sci</stitle><date>2022</date><risdate>2022</risdate><volume>43</volume><issue>10</issue><spage>5899</spage><epage>5908</epage><pages>5899-5908</pages><issn>1590-1874</issn><issn>1590-3478</issn><eissn>1590-3478</eissn><abstract>Background The exploitation of routinely collected clinical health information is warranted to optimize the case detection and diagnostic workout of Alzheimer’s disease (AD). We aimed to derive an AD prediction score based on routinely collected primary care data. Methods We built a cohort selecting 199,978 primary care patients 60 + part of the Health Search Database between January 2002 and 2009, followed up until 2019 to detect incident AD cases. The cohort was randomly divided into a derivation and validation sub-cohort. To identify AD and non-AD cases, we applied a clinical algorithm that involved two clinicians. According to a nested case–control design, AD cases were matched with up to 10 controls based on age, sex, calendar period, and follow-up duration. Using the derivation sub-cohort, 32 potential AD predictors (sociodemographic, clinical, drug-related, etc.) were tested in a logistic regression and selected to build a prediction model. The predictive performance of this model was tested on the validation sub-cohort by mean of explained variation, calibration, and discrimination measurements. Results We identified 3223 AD cases. The presence of memory disorders, hallucinations, anxiety, and depression and the use of NSAIDs were associated with future AD. The combination of the predictors allowed the production of a predictive score that showed an explained variation (pseudo- R 2 ) for AD occurrence of 13.4%, good calibration parameters, and an area under the curve of 0.73 (95% CI: 0.71–0.75). In accordance with this model, 7% of patients presented with a high-risk score for developing AD over 15 years. Conclusion An automated risk score for AD based on routinely collected clinical data is a promising tool for the early case detection and timely management of patients by the general practitioners.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10072-022-06258-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4342-9128</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1590-1874
ispartof Neurological sciences, 2022, Vol.43 (10), p.5899-5908
issn 1590-1874
1590-3478
1590-3478
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_452067
source SpringerNature Journals
subjects Alzheimer's disease
Dementia
Dementia disorders
Hallucinations
Medicin och hälsovetenskap
Medicine
Medicine & Public Health
Neurodegenerative diseases
Neurology
Neuroradiology
Neurosciences
Neurosurgery
Nonsteroidal anti-inflammatory drugs
Original Article
Patients
Prediction
Prediction models
Primary care
Psychiatry
title Development and internal validation of a prognostic model for 15-year risk of Alzheimer dementia in primary care patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20internal%20validation%20of%20a%20prognostic%20model%20for%2015-year%20risk%20of%20Alzheimer%20dementia%20in%20primary%20care%20patients&rft.jtitle=Neurological%20sciences&rft.au=Grande,%20Giulia&rft.date=2022&rft.volume=43&rft.issue=10&rft.spage=5899&rft.epage=5908&rft.pages=5899-5908&rft.issn=1590-1874&rft.eissn=1590-3478&rft_id=info:doi/10.1007/s10072-022-06258-7&rft_dat=%3Cproquest_swepu%3E2691460267%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714192103&rft_id=info:pmid/&rfr_iscdi=true