Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial

Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2022-11, Vol.11 (21), p.e2201378-n/a
Hauptverfasser: Speidel, Alessondra T., Chivers, Phillip R. A., Wood, Christopher S., Roberts, Derrick A., Correia, Inês P., Caravaca, April S., Chan, Yu Kiu Victor, Hansel, Catherine S., Heimgärtner, Johannes, Müller, Eliane, Ziesmer, Jill, Sotiriou, Georgios A., Olofsson, Peder S., Stevens, Molly M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e2201378
container_title Advanced healthcare materials
container_volume 11
creator Speidel, Alessondra T.
Chivers, Phillip R. A.
Wood, Christopher S.
Roberts, Derrick A.
Correia, Inês P.
Caravaca, April S.
Chan, Yu Kiu Victor
Hansel, Catherine S.
Heimgärtner, Johannes
Müller, Eliane
Ziesmer, Jill
Sotiriou, Georgios A.
Olofsson, Peder S.
Stevens, Molly M.
description Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one‐pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long‐term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU‐PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU‐based biomaterials for a variety of applications. A simplified one‐pot method and inexpensive casting set‐up for fabricating and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels from nontoxic commercially available reagents is presented. The resulting PU‐PEG materials have concentration‐modular mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material making them an attractive scaffold material for a variety of tissue‐engineering and drug delivery applications.
doi_str_mv 10.1002/adhm.202201378
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_451447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731006734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3818-1dce3aef8d8256578a15ab4d698d89d48f82e822ae7c8ada72218fef80481ce03</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EAgRsWaJIbGCRYjsvZ8m7SOWxKGwtN56UgBMXuxHKjk_gG_kSJmopEhssS54Znbma8SVkn9EBo5SfKP1cDzjlnLIoE2tkm7OchzxN8vVVHNMtsuf9C8WTJiwVbJNsRUkuWMTTbfI6VpWxDnRwVtnC1jM1ryYGggdrutbB_Fk18PXx2adHmHUGGgimpiusOQ6GnXZ2CsYHCm_wBM5jO3bf2aa0ramaaS9bqzm4SpldslEq42Fv-e6Qx6vL8fkwHN1f35yfjsIiEkyETBcQKSiFFjxJk0wolqhJrNMcK7mORSk4CM4VZIVQWmWcM1EiT2PBCqDRDgkXuv4dZu1EzlxVK9dJqyq5LL1iBDJOWBxnyB8t-Jmzby34uawrX4AxuLttveQZKmeUiRjRwz_oi21dg9sgFaEpaRb11GBBFc5676BcjcCo7J2TvXNy5Rw2HCxl20kNeoX_-IRAvgDe8Xu7f-Tk6cXw9lf8G0nxpz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731006734</pqid></control><display><type>article</type><title>Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Wiley Online Library (Online service)</source><creator>Speidel, Alessondra T. ; Chivers, Phillip R. A. ; Wood, Christopher S. ; Roberts, Derrick A. ; Correia, Inês P. ; Caravaca, April S. ; Chan, Yu Kiu Victor ; Hansel, Catherine S. ; Heimgärtner, Johannes ; Müller, Eliane ; Ziesmer, Jill ; Sotiriou, Georgios A. ; Olofsson, Peder S. ; Stevens, Molly M.</creator><creatorcontrib>Speidel, Alessondra T. ; Chivers, Phillip R. A. ; Wood, Christopher S. ; Roberts, Derrick A. ; Correia, Inês P. ; Caravaca, April S. ; Chan, Yu Kiu Victor ; Hansel, Catherine S. ; Heimgärtner, Johannes ; Müller, Eliane ; Ziesmer, Jill ; Sotiriou, Georgios A. ; Olofsson, Peder S. ; Stevens, Molly M.</creatorcontrib><description>Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one‐pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long‐term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU‐PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU‐based biomaterials for a variety of applications. A simplified one‐pot method and inexpensive casting set‐up for fabricating and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels from nontoxic commercially available reagents is presented. The resulting PU‐PEG materials have concentration‐modular mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material making them an attractive scaffold material for a variety of tissue‐engineering and drug delivery applications.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202201378</identifier><identifier>PMID: 35981326</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Albumins ; Animals ; Automation ; Biocompatibility ; Biocompatible Materials ; Biomaterials ; Biomedical materials ; Cell adhesion ; Drug delivery ; Fibrinogen ; Humans ; Hydrogels ; In vivo methods and tests ; Manufacturing engineering ; Mechanical properties ; Mice ; nonfouling ; Physical properties ; Plasma proteins ; Polydimethylsiloxane ; Polyethylene glycol ; polyethylene glycol (PEG) ; Polyethylene Glycols ; Polyurethane ; Polyurethane resins ; Polyurethanes ; Prostheses ; Prosthetics ; Reagents ; Robotics ; Shear modulus ; Soft tissues ; Surgical implants ; Synthesis ; Tissue engineering ; Tissue Engineering - methods ; Toxicity</subject><ispartof>Advanced healthcare materials, 2022-11, Vol.11 (21), p.e2201378-n/a</ispartof><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3818-1dce3aef8d8256578a15ab4d698d89d48f82e822ae7c8ada72218fef80481ce03</citedby><cites>FETCH-LOGICAL-c3818-1dce3aef8d8256578a15ab4d698d89d48f82e822ae7c8ada72218fef80481ce03</cites><orcidid>0000-0002-2576-2015 ; 0000-0002-4663-7475 ; 0000-0002-1146-7090 ; 0000-0003-3473-5948 ; 0000-0001-6921-8700 ; 0000-0002-2525-1856 ; 0000-0001-5040-620X ; 0000-0002-0294-0114 ; 0000-0003-4424-5563 ; 0000-0001-9966-2669 ; 0000-0003-0059-9888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202201378$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202201378$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,551,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35981326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:150606799$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Speidel, Alessondra T.</creatorcontrib><creatorcontrib>Chivers, Phillip R. A.</creatorcontrib><creatorcontrib>Wood, Christopher S.</creatorcontrib><creatorcontrib>Roberts, Derrick A.</creatorcontrib><creatorcontrib>Correia, Inês P.</creatorcontrib><creatorcontrib>Caravaca, April S.</creatorcontrib><creatorcontrib>Chan, Yu Kiu Victor</creatorcontrib><creatorcontrib>Hansel, Catherine S.</creatorcontrib><creatorcontrib>Heimgärtner, Johannes</creatorcontrib><creatorcontrib>Müller, Eliane</creatorcontrib><creatorcontrib>Ziesmer, Jill</creatorcontrib><creatorcontrib>Sotiriou, Georgios A.</creatorcontrib><creatorcontrib>Olofsson, Peder S.</creatorcontrib><creatorcontrib>Stevens, Molly M.</creatorcontrib><title>Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one‐pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long‐term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU‐PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU‐based biomaterials for a variety of applications. A simplified one‐pot method and inexpensive casting set‐up for fabricating and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels from nontoxic commercially available reagents is presented. The resulting PU‐PEG materials have concentration‐modular mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material making them an attractive scaffold material for a variety of tissue‐engineering and drug delivery applications.</description><subject>Albumins</subject><subject>Animals</subject><subject>Automation</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>Drug delivery</subject><subject>Fibrinogen</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>In vivo methods and tests</subject><subject>Manufacturing engineering</subject><subject>Mechanical properties</subject><subject>Mice</subject><subject>nonfouling</subject><subject>Physical properties</subject><subject>Plasma proteins</subject><subject>Polydimethylsiloxane</subject><subject>Polyethylene glycol</subject><subject>polyethylene glycol (PEG)</subject><subject>Polyethylene Glycols</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Reagents</subject><subject>Robotics</subject><subject>Shear modulus</subject><subject>Soft tissues</subject><subject>Surgical implants</subject><subject>Synthesis</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Toxicity</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqFkctOwzAQRS0EAgRsWaJIbGCRYjsvZ8m7SOWxKGwtN56UgBMXuxHKjk_gG_kSJmopEhssS54Znbma8SVkn9EBo5SfKP1cDzjlnLIoE2tkm7OchzxN8vVVHNMtsuf9C8WTJiwVbJNsRUkuWMTTbfI6VpWxDnRwVtnC1jM1ryYGggdrutbB_Fk18PXx2adHmHUGGgimpiusOQ6GnXZ2CsYHCm_wBM5jO3bf2aa0ramaaS9bqzm4SpldslEq42Fv-e6Qx6vL8fkwHN1f35yfjsIiEkyETBcQKSiFFjxJk0wolqhJrNMcK7mORSk4CM4VZIVQWmWcM1EiT2PBCqDRDgkXuv4dZu1EzlxVK9dJqyq5LL1iBDJOWBxnyB8t-Jmzby34uawrX4AxuLttveQZKmeUiRjRwz_oi21dg9sgFaEpaRb11GBBFc5676BcjcCo7J2TvXNy5Rw2HCxl20kNeoX_-IRAvgDe8Xu7f-Tk6cXw9lf8G0nxpz4</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Speidel, Alessondra T.</creator><creator>Chivers, Phillip R. A.</creator><creator>Wood, Christopher S.</creator><creator>Roberts, Derrick A.</creator><creator>Correia, Inês P.</creator><creator>Caravaca, April S.</creator><creator>Chan, Yu Kiu Victor</creator><creator>Hansel, Catherine S.</creator><creator>Heimgärtner, Johannes</creator><creator>Müller, Eliane</creator><creator>Ziesmer, Jill</creator><creator>Sotiriou, Georgios A.</creator><creator>Olofsson, Peder S.</creator><creator>Stevens, Molly M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-2576-2015</orcidid><orcidid>https://orcid.org/0000-0002-4663-7475</orcidid><orcidid>https://orcid.org/0000-0002-1146-7090</orcidid><orcidid>https://orcid.org/0000-0003-3473-5948</orcidid><orcidid>https://orcid.org/0000-0001-6921-8700</orcidid><orcidid>https://orcid.org/0000-0002-2525-1856</orcidid><orcidid>https://orcid.org/0000-0001-5040-620X</orcidid><orcidid>https://orcid.org/0000-0002-0294-0114</orcidid><orcidid>https://orcid.org/0000-0003-4424-5563</orcidid><orcidid>https://orcid.org/0000-0001-9966-2669</orcidid><orcidid>https://orcid.org/0000-0003-0059-9888</orcidid></search><sort><creationdate>20221101</creationdate><title>Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial</title><author>Speidel, Alessondra T. ; Chivers, Phillip R. A. ; Wood, Christopher S. ; Roberts, Derrick A. ; Correia, Inês P. ; Caravaca, April S. ; Chan, Yu Kiu Victor ; Hansel, Catherine S. ; Heimgärtner, Johannes ; Müller, Eliane ; Ziesmer, Jill ; Sotiriou, Georgios A. ; Olofsson, Peder S. ; Stevens, Molly M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3818-1dce3aef8d8256578a15ab4d698d89d48f82e822ae7c8ada72218fef80481ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Albumins</topic><topic>Animals</topic><topic>Automation</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>Drug delivery</topic><topic>Fibrinogen</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>In vivo methods and tests</topic><topic>Manufacturing engineering</topic><topic>Mechanical properties</topic><topic>Mice</topic><topic>nonfouling</topic><topic>Physical properties</topic><topic>Plasma proteins</topic><topic>Polydimethylsiloxane</topic><topic>Polyethylene glycol</topic><topic>polyethylene glycol (PEG)</topic><topic>Polyethylene Glycols</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Reagents</topic><topic>Robotics</topic><topic>Shear modulus</topic><topic>Soft tissues</topic><topic>Surgical implants</topic><topic>Synthesis</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speidel, Alessondra T.</creatorcontrib><creatorcontrib>Chivers, Phillip R. A.</creatorcontrib><creatorcontrib>Wood, Christopher S.</creatorcontrib><creatorcontrib>Roberts, Derrick A.</creatorcontrib><creatorcontrib>Correia, Inês P.</creatorcontrib><creatorcontrib>Caravaca, April S.</creatorcontrib><creatorcontrib>Chan, Yu Kiu Victor</creatorcontrib><creatorcontrib>Hansel, Catherine S.</creatorcontrib><creatorcontrib>Heimgärtner, Johannes</creatorcontrib><creatorcontrib>Müller, Eliane</creatorcontrib><creatorcontrib>Ziesmer, Jill</creatorcontrib><creatorcontrib>Sotiriou, Georgios A.</creatorcontrib><creatorcontrib>Olofsson, Peder S.</creatorcontrib><creatorcontrib>Stevens, Molly M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speidel, Alessondra T.</au><au>Chivers, Phillip R. A.</au><au>Wood, Christopher S.</au><au>Roberts, Derrick A.</au><au>Correia, Inês P.</au><au>Caravaca, April S.</au><au>Chan, Yu Kiu Victor</au><au>Hansel, Catherine S.</au><au>Heimgärtner, Johannes</au><au>Müller, Eliane</au><au>Ziesmer, Jill</au><au>Sotiriou, Georgios A.</au><au>Olofsson, Peder S.</au><au>Stevens, Molly M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>11</volume><issue>21</issue><spage>e2201378</spage><epage>n/a</epage><pages>e2201378-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one‐pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long‐term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU‐PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU‐based biomaterials for a variety of applications. A simplified one‐pot method and inexpensive casting set‐up for fabricating and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels from nontoxic commercially available reagents is presented. The resulting PU‐PEG materials have concentration‐modular mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material making them an attractive scaffold material for a variety of tissue‐engineering and drug delivery applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35981326</pmid><doi>10.1002/adhm.202201378</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2576-2015</orcidid><orcidid>https://orcid.org/0000-0002-4663-7475</orcidid><orcidid>https://orcid.org/0000-0002-1146-7090</orcidid><orcidid>https://orcid.org/0000-0003-3473-5948</orcidid><orcidid>https://orcid.org/0000-0001-6921-8700</orcidid><orcidid>https://orcid.org/0000-0002-2525-1856</orcidid><orcidid>https://orcid.org/0000-0001-5040-620X</orcidid><orcidid>https://orcid.org/0000-0002-0294-0114</orcidid><orcidid>https://orcid.org/0000-0003-4424-5563</orcidid><orcidid>https://orcid.org/0000-0001-9966-2669</orcidid><orcidid>https://orcid.org/0000-0003-0059-9888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2022-11, Vol.11 (21), p.e2201378-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_451447
source MEDLINE; SWEPUB Freely available online; Wiley Online Library (Online service)
subjects Albumins
Animals
Automation
Biocompatibility
Biocompatible Materials
Biomaterials
Biomedical materials
Cell adhesion
Drug delivery
Fibrinogen
Humans
Hydrogels
In vivo methods and tests
Manufacturing engineering
Mechanical properties
Mice
nonfouling
Physical properties
Plasma proteins
Polydimethylsiloxane
Polyethylene glycol
polyethylene glycol (PEG)
Polyethylene Glycols
Polyurethane
Polyurethane resins
Polyurethanes
Prostheses
Prosthetics
Reagents
Robotics
Shear modulus
Soft tissues
Surgical implants
Synthesis
Tissue engineering
Tissue Engineering - methods
Toxicity
title Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailored%20Biocompatible%20Polyurethane%E2%80%90Poly(ethylene%20glycol)%20Hydrogels%20as%20a%20Versatile%20Nonfouling%20Biomaterial&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Speidel,%20Alessondra%20T.&rft.date=2022-11-01&rft.volume=11&rft.issue=21&rft.spage=e2201378&rft.epage=n/a&rft.pages=e2201378-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202201378&rft_dat=%3Cproquest_swepu%3E2731006734%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731006734&rft_id=info:pmid/35981326&rfr_iscdi=true