Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial
Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing an...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2022-11, Vol.11 (21), p.e2201378-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | e2201378 |
container_title | Advanced healthcare materials |
container_volume | 11 |
creator | Speidel, Alessondra T. Chivers, Phillip R. A. Wood, Christopher S. Roberts, Derrick A. Correia, Inês P. Caravaca, April S. Chan, Yu Kiu Victor Hansel, Catherine S. Heimgärtner, Johannes Müller, Eliane Ziesmer, Jill Sotiriou, Georgios A. Olofsson, Peder S. Stevens, Molly M. |
description | Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one‐pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long‐term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU‐PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU‐based biomaterials for a variety of applications.
A simplified one‐pot method and inexpensive casting set‐up for fabricating and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels from nontoxic commercially available reagents is presented. The resulting PU‐PEG materials have concentration‐modular mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material making them an attractive scaffold material for a variety of tissue‐engineering and drug delivery applications. |
doi_str_mv | 10.1002/adhm.202201378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_451447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731006734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3818-1dce3aef8d8256578a15ab4d698d89d48f82e822ae7c8ada72218fef80481ce03</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EAgRsWaJIbGCRYjsvZ8m7SOWxKGwtN56UgBMXuxHKjk_gG_kSJmopEhssS54Znbma8SVkn9EBo5SfKP1cDzjlnLIoE2tkm7OchzxN8vVVHNMtsuf9C8WTJiwVbJNsRUkuWMTTbfI6VpWxDnRwVtnC1jM1ryYGggdrutbB_Fk18PXx2adHmHUGGgimpiusOQ6GnXZ2CsYHCm_wBM5jO3bf2aa0ramaaS9bqzm4SpldslEq42Fv-e6Qx6vL8fkwHN1f35yfjsIiEkyETBcQKSiFFjxJk0wolqhJrNMcK7mORSk4CM4VZIVQWmWcM1EiT2PBCqDRDgkXuv4dZu1EzlxVK9dJqyq5LL1iBDJOWBxnyB8t-Jmzby34uawrX4AxuLttveQZKmeUiRjRwz_oi21dg9sgFaEpaRb11GBBFc5676BcjcCo7J2TvXNy5Rw2HCxl20kNeoX_-IRAvgDe8Xu7f-Tk6cXw9lf8G0nxpz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731006734</pqid></control><display><type>article</type><title>Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Wiley Online Library (Online service)</source><creator>Speidel, Alessondra T. ; Chivers, Phillip R. A. ; Wood, Christopher S. ; Roberts, Derrick A. ; Correia, Inês P. ; Caravaca, April S. ; Chan, Yu Kiu Victor ; Hansel, Catherine S. ; Heimgärtner, Johannes ; Müller, Eliane ; Ziesmer, Jill ; Sotiriou, Georgios A. ; Olofsson, Peder S. ; Stevens, Molly M.</creator><creatorcontrib>Speidel, Alessondra T. ; Chivers, Phillip R. A. ; Wood, Christopher S. ; Roberts, Derrick A. ; Correia, Inês P. ; Caravaca, April S. ; Chan, Yu Kiu Victor ; Hansel, Catherine S. ; Heimgärtner, Johannes ; Müller, Eliane ; Ziesmer, Jill ; Sotiriou, Georgios A. ; Olofsson, Peder S. ; Stevens, Molly M.</creatorcontrib><description>Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one‐pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long‐term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU‐PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU‐based biomaterials for a variety of applications.
A simplified one‐pot method and inexpensive casting set‐up for fabricating and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels from nontoxic commercially available reagents is presented. The resulting PU‐PEG materials have concentration‐modular mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material making them an attractive scaffold material for a variety of tissue‐engineering and drug delivery applications.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202201378</identifier><identifier>PMID: 35981326</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Albumins ; Animals ; Automation ; Biocompatibility ; Biocompatible Materials ; Biomaterials ; Biomedical materials ; Cell adhesion ; Drug delivery ; Fibrinogen ; Humans ; Hydrogels ; In vivo methods and tests ; Manufacturing engineering ; Mechanical properties ; Mice ; nonfouling ; Physical properties ; Plasma proteins ; Polydimethylsiloxane ; Polyethylene glycol ; polyethylene glycol (PEG) ; Polyethylene Glycols ; Polyurethane ; Polyurethane resins ; Polyurethanes ; Prostheses ; Prosthetics ; Reagents ; Robotics ; Shear modulus ; Soft tissues ; Surgical implants ; Synthesis ; Tissue engineering ; Tissue Engineering - methods ; Toxicity</subject><ispartof>Advanced healthcare materials, 2022-11, Vol.11 (21), p.e2201378-n/a</ispartof><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3818-1dce3aef8d8256578a15ab4d698d89d48f82e822ae7c8ada72218fef80481ce03</citedby><cites>FETCH-LOGICAL-c3818-1dce3aef8d8256578a15ab4d698d89d48f82e822ae7c8ada72218fef80481ce03</cites><orcidid>0000-0002-2576-2015 ; 0000-0002-4663-7475 ; 0000-0002-1146-7090 ; 0000-0003-3473-5948 ; 0000-0001-6921-8700 ; 0000-0002-2525-1856 ; 0000-0001-5040-620X ; 0000-0002-0294-0114 ; 0000-0003-4424-5563 ; 0000-0001-9966-2669 ; 0000-0003-0059-9888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202201378$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202201378$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,551,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35981326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:150606799$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Speidel, Alessondra T.</creatorcontrib><creatorcontrib>Chivers, Phillip R. A.</creatorcontrib><creatorcontrib>Wood, Christopher S.</creatorcontrib><creatorcontrib>Roberts, Derrick A.</creatorcontrib><creatorcontrib>Correia, Inês P.</creatorcontrib><creatorcontrib>Caravaca, April S.</creatorcontrib><creatorcontrib>Chan, Yu Kiu Victor</creatorcontrib><creatorcontrib>Hansel, Catherine S.</creatorcontrib><creatorcontrib>Heimgärtner, Johannes</creatorcontrib><creatorcontrib>Müller, Eliane</creatorcontrib><creatorcontrib>Ziesmer, Jill</creatorcontrib><creatorcontrib>Sotiriou, Georgios A.</creatorcontrib><creatorcontrib>Olofsson, Peder S.</creatorcontrib><creatorcontrib>Stevens, Molly M.</creatorcontrib><title>Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one‐pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long‐term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU‐PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU‐based biomaterials for a variety of applications.
A simplified one‐pot method and inexpensive casting set‐up for fabricating and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels from nontoxic commercially available reagents is presented. The resulting PU‐PEG materials have concentration‐modular mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material making them an attractive scaffold material for a variety of tissue‐engineering and drug delivery applications.</description><subject>Albumins</subject><subject>Animals</subject><subject>Automation</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>Drug delivery</subject><subject>Fibrinogen</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>In vivo methods and tests</subject><subject>Manufacturing engineering</subject><subject>Mechanical properties</subject><subject>Mice</subject><subject>nonfouling</subject><subject>Physical properties</subject><subject>Plasma proteins</subject><subject>Polydimethylsiloxane</subject><subject>Polyethylene glycol</subject><subject>polyethylene glycol (PEG)</subject><subject>Polyethylene Glycols</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Reagents</subject><subject>Robotics</subject><subject>Shear modulus</subject><subject>Soft tissues</subject><subject>Surgical implants</subject><subject>Synthesis</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Toxicity</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqFkctOwzAQRS0EAgRsWaJIbGCRYjsvZ8m7SOWxKGwtN56UgBMXuxHKjk_gG_kSJmopEhssS54Znbma8SVkn9EBo5SfKP1cDzjlnLIoE2tkm7OchzxN8vVVHNMtsuf9C8WTJiwVbJNsRUkuWMTTbfI6VpWxDnRwVtnC1jM1ryYGggdrutbB_Fk18PXx2adHmHUGGgimpiusOQ6GnXZ2CsYHCm_wBM5jO3bf2aa0ramaaS9bqzm4SpldslEq42Fv-e6Qx6vL8fkwHN1f35yfjsIiEkyETBcQKSiFFjxJk0wolqhJrNMcK7mORSk4CM4VZIVQWmWcM1EiT2PBCqDRDgkXuv4dZu1EzlxVK9dJqyq5LL1iBDJOWBxnyB8t-Jmzby34uawrX4AxuLttveQZKmeUiRjRwz_oi21dg9sgFaEpaRb11GBBFc5676BcjcCo7J2TvXNy5Rw2HCxl20kNeoX_-IRAvgDe8Xu7f-Tk6cXw9lf8G0nxpz4</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Speidel, Alessondra T.</creator><creator>Chivers, Phillip R. A.</creator><creator>Wood, Christopher S.</creator><creator>Roberts, Derrick A.</creator><creator>Correia, Inês P.</creator><creator>Caravaca, April S.</creator><creator>Chan, Yu Kiu Victor</creator><creator>Hansel, Catherine S.</creator><creator>Heimgärtner, Johannes</creator><creator>Müller, Eliane</creator><creator>Ziesmer, Jill</creator><creator>Sotiriou, Georgios A.</creator><creator>Olofsson, Peder S.</creator><creator>Stevens, Molly M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-2576-2015</orcidid><orcidid>https://orcid.org/0000-0002-4663-7475</orcidid><orcidid>https://orcid.org/0000-0002-1146-7090</orcidid><orcidid>https://orcid.org/0000-0003-3473-5948</orcidid><orcidid>https://orcid.org/0000-0001-6921-8700</orcidid><orcidid>https://orcid.org/0000-0002-2525-1856</orcidid><orcidid>https://orcid.org/0000-0001-5040-620X</orcidid><orcidid>https://orcid.org/0000-0002-0294-0114</orcidid><orcidid>https://orcid.org/0000-0003-4424-5563</orcidid><orcidid>https://orcid.org/0000-0001-9966-2669</orcidid><orcidid>https://orcid.org/0000-0003-0059-9888</orcidid></search><sort><creationdate>20221101</creationdate><title>Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial</title><author>Speidel, Alessondra T. ; Chivers, Phillip R. A. ; Wood, Christopher S. ; Roberts, Derrick A. ; Correia, Inês P. ; Caravaca, April S. ; Chan, Yu Kiu Victor ; Hansel, Catherine S. ; Heimgärtner, Johannes ; Müller, Eliane ; Ziesmer, Jill ; Sotiriou, Georgios A. ; Olofsson, Peder S. ; Stevens, Molly M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3818-1dce3aef8d8256578a15ab4d698d89d48f82e822ae7c8ada72218fef80481ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Albumins</topic><topic>Animals</topic><topic>Automation</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>Drug delivery</topic><topic>Fibrinogen</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>In vivo methods and tests</topic><topic>Manufacturing engineering</topic><topic>Mechanical properties</topic><topic>Mice</topic><topic>nonfouling</topic><topic>Physical properties</topic><topic>Plasma proteins</topic><topic>Polydimethylsiloxane</topic><topic>Polyethylene glycol</topic><topic>polyethylene glycol (PEG)</topic><topic>Polyethylene Glycols</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Reagents</topic><topic>Robotics</topic><topic>Shear modulus</topic><topic>Soft tissues</topic><topic>Surgical implants</topic><topic>Synthesis</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speidel, Alessondra T.</creatorcontrib><creatorcontrib>Chivers, Phillip R. A.</creatorcontrib><creatorcontrib>Wood, Christopher S.</creatorcontrib><creatorcontrib>Roberts, Derrick A.</creatorcontrib><creatorcontrib>Correia, Inês P.</creatorcontrib><creatorcontrib>Caravaca, April S.</creatorcontrib><creatorcontrib>Chan, Yu Kiu Victor</creatorcontrib><creatorcontrib>Hansel, Catherine S.</creatorcontrib><creatorcontrib>Heimgärtner, Johannes</creatorcontrib><creatorcontrib>Müller, Eliane</creatorcontrib><creatorcontrib>Ziesmer, Jill</creatorcontrib><creatorcontrib>Sotiriou, Georgios A.</creatorcontrib><creatorcontrib>Olofsson, Peder S.</creatorcontrib><creatorcontrib>Stevens, Molly M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speidel, Alessondra T.</au><au>Chivers, Phillip R. A.</au><au>Wood, Christopher S.</au><au>Roberts, Derrick A.</au><au>Correia, Inês P.</au><au>Caravaca, April S.</au><au>Chan, Yu Kiu Victor</au><au>Hansel, Catherine S.</au><au>Heimgärtner, Johannes</au><au>Müller, Eliane</au><au>Ziesmer, Jill</au><au>Sotiriou, Georgios A.</au><au>Olofsson, Peder S.</au><au>Stevens, Molly M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>11</volume><issue>21</issue><spage>e2201378</spage><epage>n/a</epage><pages>e2201378-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one‐pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long‐term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU‐PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU‐based biomaterials for a variety of applications.
A simplified one‐pot method and inexpensive casting set‐up for fabricating and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels from nontoxic commercially available reagents is presented. The resulting PU‐PEG materials have concentration‐modular mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material making them an attractive scaffold material for a variety of tissue‐engineering and drug delivery applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35981326</pmid><doi>10.1002/adhm.202201378</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2576-2015</orcidid><orcidid>https://orcid.org/0000-0002-4663-7475</orcidid><orcidid>https://orcid.org/0000-0002-1146-7090</orcidid><orcidid>https://orcid.org/0000-0003-3473-5948</orcidid><orcidid>https://orcid.org/0000-0001-6921-8700</orcidid><orcidid>https://orcid.org/0000-0002-2525-1856</orcidid><orcidid>https://orcid.org/0000-0001-5040-620X</orcidid><orcidid>https://orcid.org/0000-0002-0294-0114</orcidid><orcidid>https://orcid.org/0000-0003-4424-5563</orcidid><orcidid>https://orcid.org/0000-0001-9966-2669</orcidid><orcidid>https://orcid.org/0000-0003-0059-9888</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2022-11, Vol.11 (21), p.e2201378-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_451447 |
source | MEDLINE; SWEPUB Freely available online; Wiley Online Library (Online service) |
subjects | Albumins Animals Automation Biocompatibility Biocompatible Materials Biomaterials Biomedical materials Cell adhesion Drug delivery Fibrinogen Humans Hydrogels In vivo methods and tests Manufacturing engineering Mechanical properties Mice nonfouling Physical properties Plasma proteins Polydimethylsiloxane Polyethylene glycol polyethylene glycol (PEG) Polyethylene Glycols Polyurethane Polyurethane resins Polyurethanes Prostheses Prosthetics Reagents Robotics Shear modulus Soft tissues Surgical implants Synthesis Tissue engineering Tissue Engineering - methods Toxicity |
title | Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailored%20Biocompatible%20Polyurethane%E2%80%90Poly(ethylene%20glycol)%20Hydrogels%20as%20a%20Versatile%20Nonfouling%20Biomaterial&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Speidel,%20Alessondra%20T.&rft.date=2022-11-01&rft.volume=11&rft.issue=21&rft.spage=e2201378&rft.epage=n/a&rft.pages=e2201378-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202201378&rft_dat=%3Cproquest_swepu%3E2731006734%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731006734&rft_id=info:pmid/35981326&rfr_iscdi=true |