Respiratory entrainment of units in the mouse parietal cortex depends on vigilance state

Synchronous oscillations are essential for coordinated activity in neuronal networks and, hence, for behavior and cognition. While most network oscillations are generated within the central nervous system, recent evidence shows that rhythmic body processes strongly influence activity patterns throug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2023-01, Vol.475 (1), p.65-76
Hauptverfasser: Jung, Felix, Yanovsky, Yevgenij, Brankačk, Jurij, Tort, Adriano B. L., Draguhn, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 65
container_title Pflügers Archiv
container_volume 475
creator Jung, Felix
Yanovsky, Yevgenij
Brankačk, Jurij
Tort, Adriano B. L.
Draguhn, Andreas
description Synchronous oscillations are essential for coordinated activity in neuronal networks and, hence, for behavior and cognition. While most network oscillations are generated within the central nervous system, recent evidence shows that rhythmic body processes strongly influence activity patterns throughout the brain. A major factor is respiration (Resp), which entrains multiple brain regions at the mesoscopic (local field potential) and single-cell levels. However, it is largely unknown how such Resp-driven rhythms interact or compete with internal brain oscillations, especially those with similar frequency domains. In mice, Resp and theta (θ) oscillations have overlapping frequencies and co-occur in various brain regions. Here, we investigated the effects of Resp and θ on neuronal discharges in the mouse parietal cortex during four behavioral states which either show prominent θ (REM sleep and active waking (AW)) or lack significant θ (NREM sleep and waking immobility (WI)). We report a pronounced state-dependence of spike modulation by both rhythms. During REM sleep, θ effects on unit discharges dominate, while during AW, Resp has a larger influence, despite the concomitant presence of θ oscillations. In most states, unit modulation by θ or Resp increases with mean firing rate. The preferred timing of Resp-entrained discharges (inspiration versus expiration) varies between states, indicating state-specific and different underlying mechanisms. Our findings show that neurons in an associative cortex area are differentially and state-dependently modulated by two fundamentally different processes: brain-endogenous θ oscillations and rhythmic somatic feedback signals from Resp.
doi_str_mv 10.1007/s00424-022-02727-2
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_451441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760983424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-2b6029e1f4ea2c927744a141641a76e4cd4464923c0c0d9a4e07c8e6d7629ab73</originalsourceid><addsrcrecordid>eNp9kUFrFTEQx4Mo9ln9Ah4k4MXLajKZt9m9CFKsCgVBFLyFvOy819TdZE2y1X77xr5ntR48hAmZ3_wnM3_GnkrxUgqhX2UhELARAPVo0A3cYyuJChoQUt1nKyGUbFrddkfsUc4XQgjADh6yI7XuO1AoV-zrJ8qzT7bEdMUplGR9mGrkccuX4EvmPvByTnyKSyY-2-Sp2JG7mAr95APNFIbMY-CXfudHGxzxXGyhx-zB1o6ZnhziMfty-vbzyfvm7OO7DydvzhqHCKWBTSugJ7lFsuB60BrRSpQtSqtbQjcgttiDcsKJobdIQruO2kG30NuNVses2evmHzQvGzMnP9l0ZaL15vD0rd7I4Foiysq_3vM1M9HgbmYe75TdzQR_bnbx0vSdbEGqKvDiIJDi94VyMZPPjsY6O9UdGdACOy3X2FX0-T_oRVxSqOuoVCv6TlX_KgV7yqWYc6Lt7WekML-MNnujTTXa3BhtoBY9-3uM25LfzlZAHfZSU2FH6U_v_8heA1j3tNU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760983424</pqid></control><display><type>article</type><title>Respiratory entrainment of units in the mouse parietal cortex depends on vigilance state</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Springer Nature - Complete Springer Journals</source><creator>Jung, Felix ; Yanovsky, Yevgenij ; Brankačk, Jurij ; Tort, Adriano B. L. ; Draguhn, Andreas</creator><creatorcontrib>Jung, Felix ; Yanovsky, Yevgenij ; Brankačk, Jurij ; Tort, Adriano B. L. ; Draguhn, Andreas</creatorcontrib><description>Synchronous oscillations are essential for coordinated activity in neuronal networks and, hence, for behavior and cognition. While most network oscillations are generated within the central nervous system, recent evidence shows that rhythmic body processes strongly influence activity patterns throughout the brain. A major factor is respiration (Resp), which entrains multiple brain regions at the mesoscopic (local field potential) and single-cell levels. However, it is largely unknown how such Resp-driven rhythms interact or compete with internal brain oscillations, especially those with similar frequency domains. In mice, Resp and theta (θ) oscillations have overlapping frequencies and co-occur in various brain regions. Here, we investigated the effects of Resp and θ on neuronal discharges in the mouse parietal cortex during four behavioral states which either show prominent θ (REM sleep and active waking (AW)) or lack significant θ (NREM sleep and waking immobility (WI)). We report a pronounced state-dependence of spike modulation by both rhythms. During REM sleep, θ effects on unit discharges dominate, while during AW, Resp has a larger influence, despite the concomitant presence of θ oscillations. In most states, unit modulation by θ or Resp increases with mean firing rate. The preferred timing of Resp-entrained discharges (inspiration versus expiration) varies between states, indicating state-specific and different underlying mechanisms. Our findings show that neurons in an associative cortex area are differentially and state-dependently modulated by two fundamentally different processes: brain-endogenous θ oscillations and rhythmic somatic feedback signals from Resp.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-022-02727-2</identifier><identifier>PMID: 35982341</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activity patterns ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cell Biology ; Central nervous system ; Cerebral Cortex ; Cognition ; Cortex (parietal) ; Electrophysiological recording ; Entrainment ; Firing rate ; Hippocampus - physiology ; Human Physiology ; Mice ; Molecular Medicine ; Neural networks ; Neurosciences ; NREM sleep ; Original ; Original Article ; Parietal Lobe ; Receptors ; REM sleep ; Respiration ; Rhythm ; Rhythms ; Sleep ; Sleep and wakefulness ; Sleep, REM - physiology ; Theta Rhythm - physiology ; Theta rhythms ; Vigilance</subject><ispartof>Pflügers Archiv, 2023-01, Vol.475 (1), p.65-76</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-2b6029e1f4ea2c927744a141641a76e4cd4464923c0c0d9a4e07c8e6d7629ab73</citedby><cites>FETCH-LOGICAL-c442t-2b6029e1f4ea2c927744a141641a76e4cd4464923c0c0d9a4e07c8e6d7629ab73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-022-02727-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-022-02727-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35982341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:150442528$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Felix</creatorcontrib><creatorcontrib>Yanovsky, Yevgenij</creatorcontrib><creatorcontrib>Brankačk, Jurij</creatorcontrib><creatorcontrib>Tort, Adriano B. L.</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><title>Respiratory entrainment of units in the mouse parietal cortex depends on vigilance state</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>Synchronous oscillations are essential for coordinated activity in neuronal networks and, hence, for behavior and cognition. While most network oscillations are generated within the central nervous system, recent evidence shows that rhythmic body processes strongly influence activity patterns throughout the brain. A major factor is respiration (Resp), which entrains multiple brain regions at the mesoscopic (local field potential) and single-cell levels. However, it is largely unknown how such Resp-driven rhythms interact or compete with internal brain oscillations, especially those with similar frequency domains. In mice, Resp and theta (θ) oscillations have overlapping frequencies and co-occur in various brain regions. Here, we investigated the effects of Resp and θ on neuronal discharges in the mouse parietal cortex during four behavioral states which either show prominent θ (REM sleep and active waking (AW)) or lack significant θ (NREM sleep and waking immobility (WI)). We report a pronounced state-dependence of spike modulation by both rhythms. During REM sleep, θ effects on unit discharges dominate, while during AW, Resp has a larger influence, despite the concomitant presence of θ oscillations. In most states, unit modulation by θ or Resp increases with mean firing rate. The preferred timing of Resp-entrained discharges (inspiration versus expiration) varies between states, indicating state-specific and different underlying mechanisms. Our findings show that neurons in an associative cortex area are differentially and state-dependently modulated by two fundamentally different processes: brain-endogenous θ oscillations and rhythmic somatic feedback signals from Resp.</description><subject>Activity patterns</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cell Biology</subject><subject>Central nervous system</subject><subject>Cerebral Cortex</subject><subject>Cognition</subject><subject>Cortex (parietal)</subject><subject>Electrophysiological recording</subject><subject>Entrainment</subject><subject>Firing rate</subject><subject>Hippocampus - physiology</subject><subject>Human Physiology</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>NREM sleep</subject><subject>Original</subject><subject>Original Article</subject><subject>Parietal Lobe</subject><subject>Receptors</subject><subject>REM sleep</subject><subject>Respiration</subject><subject>Rhythm</subject><subject>Rhythms</subject><subject>Sleep</subject><subject>Sleep and wakefulness</subject><subject>Sleep, REM - physiology</subject><subject>Theta Rhythm - physiology</subject><subject>Theta rhythms</subject><subject>Vigilance</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><recordid>eNp9kUFrFTEQx4Mo9ln9Ah4k4MXLajKZt9m9CFKsCgVBFLyFvOy819TdZE2y1X77xr5ntR48hAmZ3_wnM3_GnkrxUgqhX2UhELARAPVo0A3cYyuJChoQUt1nKyGUbFrddkfsUc4XQgjADh6yI7XuO1AoV-zrJ8qzT7bEdMUplGR9mGrkccuX4EvmPvByTnyKSyY-2-Sp2JG7mAr95APNFIbMY-CXfudHGxzxXGyhx-zB1o6ZnhziMfty-vbzyfvm7OO7DydvzhqHCKWBTSugJ7lFsuB60BrRSpQtSqtbQjcgttiDcsKJobdIQruO2kG30NuNVses2evmHzQvGzMnP9l0ZaL15vD0rd7I4Foiysq_3vM1M9HgbmYe75TdzQR_bnbx0vSdbEGqKvDiIJDi94VyMZPPjsY6O9UdGdACOy3X2FX0-T_oRVxSqOuoVCv6TlX_KgV7yqWYc6Lt7WekML-MNnujTTXa3BhtoBY9-3uM25LfzlZAHfZSU2FH6U_v_8heA1j3tNU</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jung, Felix</creator><creator>Yanovsky, Yevgenij</creator><creator>Brankačk, Jurij</creator><creator>Tort, Adriano B. L.</creator><creator>Draguhn, Andreas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20230101</creationdate><title>Respiratory entrainment of units in the mouse parietal cortex depends on vigilance state</title><author>Jung, Felix ; Yanovsky, Yevgenij ; Brankačk, Jurij ; Tort, Adriano B. L. ; Draguhn, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-2b6029e1f4ea2c927744a141641a76e4cd4464923c0c0d9a4e07c8e6d7629ab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activity patterns</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cell Biology</topic><topic>Central nervous system</topic><topic>Cerebral Cortex</topic><topic>Cognition</topic><topic>Cortex (parietal)</topic><topic>Electrophysiological recording</topic><topic>Entrainment</topic><topic>Firing rate</topic><topic>Hippocampus - physiology</topic><topic>Human Physiology</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>NREM sleep</topic><topic>Original</topic><topic>Original Article</topic><topic>Parietal Lobe</topic><topic>Receptors</topic><topic>REM sleep</topic><topic>Respiration</topic><topic>Rhythm</topic><topic>Rhythms</topic><topic>Sleep</topic><topic>Sleep and wakefulness</topic><topic>Sleep, REM - physiology</topic><topic>Theta Rhythm - physiology</topic><topic>Theta rhythms</topic><topic>Vigilance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Felix</creatorcontrib><creatorcontrib>Yanovsky, Yevgenij</creatorcontrib><creatorcontrib>Brankačk, Jurij</creatorcontrib><creatorcontrib>Tort, Adriano B. L.</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Felix</au><au>Yanovsky, Yevgenij</au><au>Brankačk, Jurij</au><au>Tort, Adriano B. L.</au><au>Draguhn, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Respiratory entrainment of units in the mouse parietal cortex depends on vigilance state</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>475</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>Synchronous oscillations are essential for coordinated activity in neuronal networks and, hence, for behavior and cognition. While most network oscillations are generated within the central nervous system, recent evidence shows that rhythmic body processes strongly influence activity patterns throughout the brain. A major factor is respiration (Resp), which entrains multiple brain regions at the mesoscopic (local field potential) and single-cell levels. However, it is largely unknown how such Resp-driven rhythms interact or compete with internal brain oscillations, especially those with similar frequency domains. In mice, Resp and theta (θ) oscillations have overlapping frequencies and co-occur in various brain regions. Here, we investigated the effects of Resp and θ on neuronal discharges in the mouse parietal cortex during four behavioral states which either show prominent θ (REM sleep and active waking (AW)) or lack significant θ (NREM sleep and waking immobility (WI)). We report a pronounced state-dependence of spike modulation by both rhythms. During REM sleep, θ effects on unit discharges dominate, while during AW, Resp has a larger influence, despite the concomitant presence of θ oscillations. In most states, unit modulation by θ or Resp increases with mean firing rate. The preferred timing of Resp-entrained discharges (inspiration versus expiration) varies between states, indicating state-specific and different underlying mechanisms. Our findings show that neurons in an associative cortex area are differentially and state-dependently modulated by two fundamentally different processes: brain-endogenous θ oscillations and rhythmic somatic feedback signals from Resp.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35982341</pmid><doi>10.1007/s00424-022-02727-2</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2023-01, Vol.475 (1), p.65-76
issn 0031-6768
1432-2013
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_451441
source MEDLINE; SWEPUB Freely available online; Springer Nature - Complete Springer Journals
subjects Activity patterns
Animals
Biomedical and Life Sciences
Biomedicine
Brain
Cell Biology
Central nervous system
Cerebral Cortex
Cognition
Cortex (parietal)
Electrophysiological recording
Entrainment
Firing rate
Hippocampus - physiology
Human Physiology
Mice
Molecular Medicine
Neural networks
Neurosciences
NREM sleep
Original
Original Article
Parietal Lobe
Receptors
REM sleep
Respiration
Rhythm
Rhythms
Sleep
Sleep and wakefulness
Sleep, REM - physiology
Theta Rhythm - physiology
Theta rhythms
Vigilance
title Respiratory entrainment of units in the mouse parietal cortex depends on vigilance state
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Respiratory%20entrainment%20of%20units%20in%20the%20mouse%20parietal%20cortex%20depends%20on%20vigilance%20state&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Jung,%20Felix&rft.date=2023-01-01&rft.volume=475&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-022-02727-2&rft_dat=%3Cproquest_swepu%3E2760983424%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760983424&rft_id=info:pmid/35982341&rfr_iscdi=true