Genetic Regulation of SMC Gene Expression and Splicing Predict Causal CAD Genes

Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2023-02, Vol.132 (3), p.323-338
Hauptverfasser: Aherrahrou, Rédouane, Lue, Dillon, Perry, R. Noah, Aberra, Yonathan Tamrat, Khan, Mohammad Daud, Soh, Joon Yuhl, Örd, Tiit, Singha, Prosanta, Yang, Qianyi, Gilani, Huda, Benavente, Ernest Diez, Wong, Doris, Hinkle, Jameson, Ma, Lijiang, Sheynkman, Gloria M., den Ruijter, Hester M., Miller, Clint L., Björkegren, Johan L.M., Kaikkonen, Minna U., Civelek, Mete
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue 3
container_start_page 323
container_title Circulation research
container_volume 132
creator Aherrahrou, Rédouane
Lue, Dillon
Perry, R. Noah
Aberra, Yonathan Tamrat
Khan, Mohammad Daud
Soh, Joon Yuhl
Örd, Tiit
Singha, Prosanta
Yang, Qianyi
Gilani, Huda
Benavente, Ernest Diez
Wong, Doris
Hinkle, Jameson
Ma, Lijiang
Sheynkman, Gloria M.
den Ruijter, Hester M.
Miller, Clint L.
Björkegren, Johan L.M.
Kaikkonen, Minna U.
Civelek, Mete
description Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL ( ), and another locus colocalized with SMC-specific eQTL ( ). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA , also known as , in proliferative SMCs. Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.
doi_str_mv 10.1161/CIRCRESAHA.122.321586
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_448637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760821309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4398-3763dbeb93e2c22288f0eb85d9f2a54abf20fd017cdf25a6464576e1aceebb443</originalsourceid><addsrcrecordid>eNpFkU2P0zAQhi0EYsvCTwD5yCXFHjuOc6xC90NatKiFs-U4k92wbhLsRIV_j0vKcvLo9TMz8mNC3nO25lzxT9Xtrtpt95ubzZoDrAXwXKsXZMVzkJnMC_6SrBhjZVYIwS7Imxh_MMalgPI1uRAqLwtdiBW5v8Yep87RHT7M3k7d0NOhpfsvFT3d0O2vMWCMp9j2Dd2PvnNd_0C_Bmw6N9HKztF6Wm0-_-XjW_KqtT7iu_N5Sb5fbb9VN9nd_fVttbnLnBSlzkShRFNjXQoEBwBatwxrnTdlCzaXtm6BtQ3jhWtayK2SKj1JIbcOsa6lFJckW-bGI45zbcbQHWz4bQbbmXP0lCo0UmolisR_XPgxDD9njJM5dNGh97bHYY4GCsU0cMHKhOYL6sIQY8D2eThn5uTe_HdvknuzuE99H84r5vqAzXPXP9kJkAtwHPyEIT75-YjBPKL106NJn8UE45ABA8Eg1dkp0uIP696PYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760821309</pqid></control><display><type>article</type><title>Genetic Regulation of SMC Gene Expression and Splicing Predict Causal CAD Genes</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Journals@Ovid Complete</source><creator>Aherrahrou, Rédouane ; Lue, Dillon ; Perry, R. Noah ; Aberra, Yonathan Tamrat ; Khan, Mohammad Daud ; Soh, Joon Yuhl ; Örd, Tiit ; Singha, Prosanta ; Yang, Qianyi ; Gilani, Huda ; Benavente, Ernest Diez ; Wong, Doris ; Hinkle, Jameson ; Ma, Lijiang ; Sheynkman, Gloria M. ; den Ruijter, Hester M. ; Miller, Clint L. ; Björkegren, Johan L.M. ; Kaikkonen, Minna U. ; Civelek, Mete</creator><creatorcontrib>Aherrahrou, Rédouane ; Lue, Dillon ; Perry, R. Noah ; Aberra, Yonathan Tamrat ; Khan, Mohammad Daud ; Soh, Joon Yuhl ; Örd, Tiit ; Singha, Prosanta ; Yang, Qianyi ; Gilani, Huda ; Benavente, Ernest Diez ; Wong, Doris ; Hinkle, Jameson ; Ma, Lijiang ; Sheynkman, Gloria M. ; den Ruijter, Hester M. ; Miller, Clint L. ; Björkegren, Johan L.M. ; Kaikkonen, Minna U. ; Civelek, Mete</creatorcontrib><description>Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL ( ), and another locus colocalized with SMC-specific eQTL ( ). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA , also known as , in proliferative SMCs. Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.122.321586</identifier><identifier>PMID: 36597873</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><subject>AlkB Homolog 8, tRNA Methyltransferase - genetics ; AlkB Homolog 8, tRNA Methyltransferase - metabolism ; Coronary Artery Disease - genetics ; Coronary Artery Disease - metabolism ; Female ; Gene Expression ; Gene Expression Regulation ; Genetic Predisposition to Disease ; Genome-Wide Association Study - methods ; Humans ; Male ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci</subject><ispartof>Circulation research, 2023-02, Vol.132 (3), p.323-338</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4398-3763dbeb93e2c22288f0eb85d9f2a54abf20fd017cdf25a6464576e1aceebb443</citedby><cites>FETCH-LOGICAL-c4398-3763dbeb93e2c22288f0eb85d9f2a54abf20fd017cdf25a6464576e1aceebb443</cites><orcidid>0000-0001-8148-9554 ; 0000-0002-4313-4290 ; 0000-0003-2773-4330 ; 0000-0001-9762-014X ; 0000-0002-6055-2291 ; 0000-0002-3555-0964 ; 0000-0003-1945-7425 ; 0000-0002-8141-0284 ; 0000-0003-4276-3607 ; 0000-0001-6294-0979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36597873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:151872444$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Aherrahrou, Rédouane</creatorcontrib><creatorcontrib>Lue, Dillon</creatorcontrib><creatorcontrib>Perry, R. Noah</creatorcontrib><creatorcontrib>Aberra, Yonathan Tamrat</creatorcontrib><creatorcontrib>Khan, Mohammad Daud</creatorcontrib><creatorcontrib>Soh, Joon Yuhl</creatorcontrib><creatorcontrib>Örd, Tiit</creatorcontrib><creatorcontrib>Singha, Prosanta</creatorcontrib><creatorcontrib>Yang, Qianyi</creatorcontrib><creatorcontrib>Gilani, Huda</creatorcontrib><creatorcontrib>Benavente, Ernest Diez</creatorcontrib><creatorcontrib>Wong, Doris</creatorcontrib><creatorcontrib>Hinkle, Jameson</creatorcontrib><creatorcontrib>Ma, Lijiang</creatorcontrib><creatorcontrib>Sheynkman, Gloria M.</creatorcontrib><creatorcontrib>den Ruijter, Hester M.</creatorcontrib><creatorcontrib>Miller, Clint L.</creatorcontrib><creatorcontrib>Björkegren, Johan L.M.</creatorcontrib><creatorcontrib>Kaikkonen, Minna U.</creatorcontrib><creatorcontrib>Civelek, Mete</creatorcontrib><title>Genetic Regulation of SMC Gene Expression and Splicing Predict Causal CAD Genes</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL ( ), and another locus colocalized with SMC-specific eQTL ( ). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA , also known as , in proliferative SMCs. Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.</description><subject>AlkB Homolog 8, tRNA Methyltransferase - genetics</subject><subject>AlkB Homolog 8, tRNA Methyltransferase - metabolism</subject><subject>Coronary Artery Disease - genetics</subject><subject>Coronary Artery Disease - metabolism</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-Wide Association Study - methods</subject><subject>Humans</subject><subject>Male</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU2P0zAQhi0EYsvCTwD5yCXFHjuOc6xC90NatKiFs-U4k92wbhLsRIV_j0vKcvLo9TMz8mNC3nO25lzxT9Xtrtpt95ubzZoDrAXwXKsXZMVzkJnMC_6SrBhjZVYIwS7Imxh_MMalgPI1uRAqLwtdiBW5v8Yep87RHT7M3k7d0NOhpfsvFT3d0O2vMWCMp9j2Dd2PvnNd_0C_Bmw6N9HKztF6Wm0-_-XjW_KqtT7iu_N5Sb5fbb9VN9nd_fVttbnLnBSlzkShRFNjXQoEBwBatwxrnTdlCzaXtm6BtQ3jhWtayK2SKj1JIbcOsa6lFJckW-bGI45zbcbQHWz4bQbbmXP0lCo0UmolisR_XPgxDD9njJM5dNGh97bHYY4GCsU0cMHKhOYL6sIQY8D2eThn5uTe_HdvknuzuE99H84r5vqAzXPXP9kJkAtwHPyEIT75-YjBPKL106NJn8UE45ABA8Eg1dkp0uIP696PYQ</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Aherrahrou, Rédouane</creator><creator>Lue, Dillon</creator><creator>Perry, R. Noah</creator><creator>Aberra, Yonathan Tamrat</creator><creator>Khan, Mohammad Daud</creator><creator>Soh, Joon Yuhl</creator><creator>Örd, Tiit</creator><creator>Singha, Prosanta</creator><creator>Yang, Qianyi</creator><creator>Gilani, Huda</creator><creator>Benavente, Ernest Diez</creator><creator>Wong, Doris</creator><creator>Hinkle, Jameson</creator><creator>Ma, Lijiang</creator><creator>Sheynkman, Gloria M.</creator><creator>den Ruijter, Hester M.</creator><creator>Miller, Clint L.</creator><creator>Björkegren, Johan L.M.</creator><creator>Kaikkonen, Minna U.</creator><creator>Civelek, Mete</creator><general>Lippincott Williams &amp; Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-8148-9554</orcidid><orcidid>https://orcid.org/0000-0002-4313-4290</orcidid><orcidid>https://orcid.org/0000-0003-2773-4330</orcidid><orcidid>https://orcid.org/0000-0001-9762-014X</orcidid><orcidid>https://orcid.org/0000-0002-6055-2291</orcidid><orcidid>https://orcid.org/0000-0002-3555-0964</orcidid><orcidid>https://orcid.org/0000-0003-1945-7425</orcidid><orcidid>https://orcid.org/0000-0002-8141-0284</orcidid><orcidid>https://orcid.org/0000-0003-4276-3607</orcidid><orcidid>https://orcid.org/0000-0001-6294-0979</orcidid></search><sort><creationdate>20230203</creationdate><title>Genetic Regulation of SMC Gene Expression and Splicing Predict Causal CAD Genes</title><author>Aherrahrou, Rédouane ; Lue, Dillon ; Perry, R. Noah ; Aberra, Yonathan Tamrat ; Khan, Mohammad Daud ; Soh, Joon Yuhl ; Örd, Tiit ; Singha, Prosanta ; Yang, Qianyi ; Gilani, Huda ; Benavente, Ernest Diez ; Wong, Doris ; Hinkle, Jameson ; Ma, Lijiang ; Sheynkman, Gloria M. ; den Ruijter, Hester M. ; Miller, Clint L. ; Björkegren, Johan L.M. ; Kaikkonen, Minna U. ; Civelek, Mete</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4398-3763dbeb93e2c22288f0eb85d9f2a54abf20fd017cdf25a6464576e1aceebb443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AlkB Homolog 8, tRNA Methyltransferase - genetics</topic><topic>AlkB Homolog 8, tRNA Methyltransferase - metabolism</topic><topic>Coronary Artery Disease - genetics</topic><topic>Coronary Artery Disease - metabolism</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-Wide Association Study - methods</topic><topic>Humans</topic><topic>Male</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aherrahrou, Rédouane</creatorcontrib><creatorcontrib>Lue, Dillon</creatorcontrib><creatorcontrib>Perry, R. Noah</creatorcontrib><creatorcontrib>Aberra, Yonathan Tamrat</creatorcontrib><creatorcontrib>Khan, Mohammad Daud</creatorcontrib><creatorcontrib>Soh, Joon Yuhl</creatorcontrib><creatorcontrib>Örd, Tiit</creatorcontrib><creatorcontrib>Singha, Prosanta</creatorcontrib><creatorcontrib>Yang, Qianyi</creatorcontrib><creatorcontrib>Gilani, Huda</creatorcontrib><creatorcontrib>Benavente, Ernest Diez</creatorcontrib><creatorcontrib>Wong, Doris</creatorcontrib><creatorcontrib>Hinkle, Jameson</creatorcontrib><creatorcontrib>Ma, Lijiang</creatorcontrib><creatorcontrib>Sheynkman, Gloria M.</creatorcontrib><creatorcontrib>den Ruijter, Hester M.</creatorcontrib><creatorcontrib>Miller, Clint L.</creatorcontrib><creatorcontrib>Björkegren, Johan L.M.</creatorcontrib><creatorcontrib>Kaikkonen, Minna U.</creatorcontrib><creatorcontrib>Civelek, Mete</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aherrahrou, Rédouane</au><au>Lue, Dillon</au><au>Perry, R. Noah</au><au>Aberra, Yonathan Tamrat</au><au>Khan, Mohammad Daud</au><au>Soh, Joon Yuhl</au><au>Örd, Tiit</au><au>Singha, Prosanta</au><au>Yang, Qianyi</au><au>Gilani, Huda</au><au>Benavente, Ernest Diez</au><au>Wong, Doris</au><au>Hinkle, Jameson</au><au>Ma, Lijiang</au><au>Sheynkman, Gloria M.</au><au>den Ruijter, Hester M.</au><au>Miller, Clint L.</au><au>Björkegren, Johan L.M.</au><au>Kaikkonen, Minna U.</au><au>Civelek, Mete</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Regulation of SMC Gene Expression and Splicing Predict Causal CAD Genes</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2023-02-03</date><risdate>2023</risdate><volume>132</volume><issue>3</issue><spage>323</spage><epage>338</epage><pages>323-338</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL ( ), and another locus colocalized with SMC-specific eQTL ( ). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA , also known as , in proliferative SMCs. Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>36597873</pmid><doi>10.1161/CIRCRESAHA.122.321586</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8148-9554</orcidid><orcidid>https://orcid.org/0000-0002-4313-4290</orcidid><orcidid>https://orcid.org/0000-0003-2773-4330</orcidid><orcidid>https://orcid.org/0000-0001-9762-014X</orcidid><orcidid>https://orcid.org/0000-0002-6055-2291</orcidid><orcidid>https://orcid.org/0000-0002-3555-0964</orcidid><orcidid>https://orcid.org/0000-0003-1945-7425</orcidid><orcidid>https://orcid.org/0000-0002-8141-0284</orcidid><orcidid>https://orcid.org/0000-0003-4276-3607</orcidid><orcidid>https://orcid.org/0000-0001-6294-0979</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2023-02, Vol.132 (3), p.323-338
issn 0009-7330
1524-4571
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_448637
source MEDLINE; American Heart Association Journals; EZB-FREE-00999 freely available EZB journals; Journals@Ovid Complete
subjects AlkB Homolog 8, tRNA Methyltransferase - genetics
AlkB Homolog 8, tRNA Methyltransferase - metabolism
Coronary Artery Disease - genetics
Coronary Artery Disease - metabolism
Female
Gene Expression
Gene Expression Regulation
Genetic Predisposition to Disease
Genome-Wide Association Study - methods
Humans
Male
Polymorphism, Single Nucleotide
Quantitative Trait Loci
title Genetic Regulation of SMC Gene Expression and Splicing Predict Causal CAD Genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Regulation%20of%20SMC%20Gene%20Expression%20and%20Splicing%20Predict%20Causal%20CAD%20Genes&rft.jtitle=Circulation%20research&rft.au=Aherrahrou,%20R%C3%A9douane&rft.date=2023-02-03&rft.volume=132&rft.issue=3&rft.spage=323&rft.epage=338&rft.pages=323-338&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.122.321586&rft_dat=%3Cproquest_swepu%3E2760821309%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760821309&rft_id=info:pmid/36597873&rfr_iscdi=true