Neuromuscular electrical stimulation in garments optimized for compliance
Purpose Physical inactivity is associated with muscle atrophy and venous thromboembolism, which may be prevented by neuromuscular electrical stimulation (NMES). This study aimed to investigate the effect on discomfort, current amplitude and energy consumption when varying the frequency and phase dur...
Gespeichert in:
Veröffentlicht in: | European journal of applied physiology 2023, Vol.123 (8), p.1739-1748 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1748 |
---|---|
container_issue | 8 |
container_start_page | 1739 |
container_title | European journal of applied physiology |
container_volume | 123 |
creator | Juthberg, R. Flodin, J. Guo, L. Rodriguez, S. Persson, N. K. Ackermann, P. W. |
description | Purpose
Physical inactivity is associated with muscle atrophy and venous thromboembolism, which may be prevented by neuromuscular electrical stimulation (NMES). This study aimed to investigate the effect on
discomfort, current amplitude
and
energy consumption
when varying the frequency and phase duration of low-intensity NMES (LI-NMES) via a sock with knitting-integrated transverse textile electrodes (TTE).
Methods
On eleven healthy participants (four females), calf-NMES via a TTE sock was applied with increasing intensity (mA) until ankle-plantar flexion at which point outcomes were compared when testing frequencies 1, 3, 10 and 36 Hz and phase durations 75, 150, 200, 300 and 400 µs. Discomfort was assessed with a numerical rating scale (NRS, 0–10) and energy consumption was calculated and expressed in milli-Joule (mJ). Significance set to
p
≤ 0.05.
Results
1 Hz yielded a median (inter-quartile range) NRS of 2.4 (1.0–3.4), significantly lower than both 3 Hz with NRS 2.8 (1.8–4.2), and 10 Hz with NRS 3.4 (1.4–5.4) (both
p
≤ .014). Each increase in tested frequency resulted in significantly higher energy consumption, e.g. 0.6 mJ (0.5–0.8) for 1 Hz vs 14.9 mJ (12.3–21.2) for 36 Hz (
p
= .003). Longer phase durations had no significant effect on discomfort despite generally requiring significantly lower current amplitudes. Phase durations 150, 200 and 400 µs required significantly lower energy consumption compared to 75 µs (all
p
≤ .037).
Conclusion
LI-NMES applied via a TTE sock produces a relevant plantar flexion of the ankle with the best comfort and lowest energy consumption using 1 Hz and phase durations 150, 200 or 400 µs. |
doi_str_mv | 10.1007/s00421-023-05181-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_446717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794692751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c724t-5d69183d7193025d789e10b7f0bf200fadc88e68730c4f745e3e83834262f5f23</originalsourceid><addsrcrecordid>eNqdk0tv1DAUhSMEoqXwB1igSGyQUODa1_FjharyqlTBBthaHseZcZvEwU5A7a_Hw0ynLRIFdWXL9zsnOde-RfGUwCsCIF4nAEZJBRQrqIkklbpX7BOGquJIxf3dnqi94lFKpwAgKZEPiz0UQIBT3C-OP7k5hn5Odu5MLF3n7BS9NV2ZJt_ns8mHofRDuTSxd8OUyjDmgr9wTdmGWNrQj503g3WPiwet6ZJ7sl0Piq_v3305-lidfP5wfHR4UllB2VTVDVdEYiOIQqB1I6RyBBaihUVLAVrTWCkdlwLBslaw2qGTKJFRTtu6pXhQVBvf9NON80KP0fcmnutgvN4eneWd04xxQUTm1V_5MYbmSnQppJftuYOW1DXkZJLfSUtrkIjk1oxv_bdDHeJSn00rjYhSQOZf_ptfLXS2rsV_01RJXNNvNnRGe9fY_Aii6W7GuVEZ_Eovww9NADkCsuzwYusQw_fZpUn3PlnXdWZwYU6aCsW4oqJeB3_-B3oa5jjk96SpZMC5EmzdWrqhbAwpRdfu_oaAXo-G3oyGzqOhf4-GVln07HqOneTaZeO2Lbk0LF28-vYttr8A1A0dSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840669746</pqid></control><display><type>article</type><title>Neuromuscular electrical stimulation in garments optimized for compliance</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>SWEPUB Freely available online</source><creator>Juthberg, R. ; Flodin, J. ; Guo, L. ; Rodriguez, S. ; Persson, N. K. ; Ackermann, P. W.</creator><creatorcontrib>Juthberg, R. ; Flodin, J. ; Guo, L. ; Rodriguez, S. ; Persson, N. K. ; Ackermann, P. W.</creatorcontrib><description>Purpose
Physical inactivity is associated with muscle atrophy and venous thromboembolism, which may be prevented by neuromuscular electrical stimulation (NMES). This study aimed to investigate the effect on
discomfort, current amplitude
and
energy consumption
when varying the frequency and phase duration of low-intensity NMES (LI-NMES) via a sock with knitting-integrated transverse textile electrodes (TTE).
Methods
On eleven healthy participants (four females), calf-NMES via a TTE sock was applied with increasing intensity (mA) until ankle-plantar flexion at which point outcomes were compared when testing frequencies 1, 3, 10 and 36 Hz and phase durations 75, 150, 200, 300 and 400 µs. Discomfort was assessed with a numerical rating scale (NRS, 0–10) and energy consumption was calculated and expressed in milli-Joule (mJ). Significance set to
p
≤ 0.05.
Results
1 Hz yielded a median (inter-quartile range) NRS of 2.4 (1.0–3.4), significantly lower than both 3 Hz with NRS 2.8 (1.8–4.2), and 10 Hz with NRS 3.4 (1.4–5.4) (both
p
≤ .014). Each increase in tested frequency resulted in significantly higher energy consumption, e.g. 0.6 mJ (0.5–0.8) for 1 Hz vs 14.9 mJ (12.3–21.2) for 36 Hz (
p
= .003). Longer phase durations had no significant effect on discomfort despite generally requiring significantly lower current amplitudes. Phase durations 150, 200 and 400 µs required significantly lower energy consumption compared to 75 µs (all
p
≤ .037).
Conclusion
LI-NMES applied via a TTE sock produces a relevant plantar flexion of the ankle with the best comfort and lowest energy consumption using 1 Hz and phase durations 150, 200 or 400 µs.</description><identifier>ISSN: 1439-6319</identifier><identifier>ISSN: 1439-6327</identifier><identifier>EISSN: 1439-6327</identifier><identifier>DOI: 10.1007/s00421-023-05181-9</identifier><identifier>PMID: 37010623</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ankle ; Atrophy ; Biomedical and Life Sciences ; Biomedicine ; Electric Stimulation - methods ; Electric stimulation therapy ; Electric Stimulation Therapy - methods ; Electrical stimuli ; Energy consumption ; Female ; Human Physiology ; Humans ; Leg ; Medicin och hälsovetenskap ; Muscle, Skeletal - physiology ; Neuromuscular electrical stimulation ; Occupational Medicine/Industrial Medicine ; Original ; Original Article ; Pain ; Patient comfort ; Patient compliance ; physiology ; Plantar flexion ; smart textiles ; Sports Medicine ; Textil och mode (generell) ; Textiles and Fashion (General) ; Thromboembolism</subject><ispartof>European journal of applied physiology, 2023, Vol.123 (8), p.1739-1748</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c724t-5d69183d7193025d789e10b7f0bf200fadc88e68730c4f745e3e83834262f5f23</cites><orcidid>0000-0003-3488-1152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00421-023-05181-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00421-023-05181-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,553,781,785,886,4025,27928,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37010623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-29837$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-31357$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-333870$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:152508331$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:155019386$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:237010623$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Juthberg, R.</creatorcontrib><creatorcontrib>Flodin, J.</creatorcontrib><creatorcontrib>Guo, L.</creatorcontrib><creatorcontrib>Rodriguez, S.</creatorcontrib><creatorcontrib>Persson, N. K.</creatorcontrib><creatorcontrib>Ackermann, P. W.</creatorcontrib><title>Neuromuscular electrical stimulation in garments optimized for compliance</title><title>European journal of applied physiology</title><addtitle>Eur J Appl Physiol</addtitle><addtitle>Eur J Appl Physiol</addtitle><description>Purpose
Physical inactivity is associated with muscle atrophy and venous thromboembolism, which may be prevented by neuromuscular electrical stimulation (NMES). This study aimed to investigate the effect on
discomfort, current amplitude
and
energy consumption
when varying the frequency and phase duration of low-intensity NMES (LI-NMES) via a sock with knitting-integrated transverse textile electrodes (TTE).
Methods
On eleven healthy participants (four females), calf-NMES via a TTE sock was applied with increasing intensity (mA) until ankle-plantar flexion at which point outcomes were compared when testing frequencies 1, 3, 10 and 36 Hz and phase durations 75, 150, 200, 300 and 400 µs. Discomfort was assessed with a numerical rating scale (NRS, 0–10) and energy consumption was calculated and expressed in milli-Joule (mJ). Significance set to
p
≤ 0.05.
Results
1 Hz yielded a median (inter-quartile range) NRS of 2.4 (1.0–3.4), significantly lower than both 3 Hz with NRS 2.8 (1.8–4.2), and 10 Hz with NRS 3.4 (1.4–5.4) (both
p
≤ .014). Each increase in tested frequency resulted in significantly higher energy consumption, e.g. 0.6 mJ (0.5–0.8) for 1 Hz vs 14.9 mJ (12.3–21.2) for 36 Hz (
p
= .003). Longer phase durations had no significant effect on discomfort despite generally requiring significantly lower current amplitudes. Phase durations 150, 200 and 400 µs required significantly lower energy consumption compared to 75 µs (all
p
≤ .037).
Conclusion
LI-NMES applied via a TTE sock produces a relevant plantar flexion of the ankle with the best comfort and lowest energy consumption using 1 Hz and phase durations 150, 200 or 400 µs.</description><subject>Ankle</subject><subject>Atrophy</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Electric Stimulation - methods</subject><subject>Electric stimulation therapy</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrical stimuli</subject><subject>Energy consumption</subject><subject>Female</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Leg</subject><subject>Medicin och hälsovetenskap</subject><subject>Muscle, Skeletal - physiology</subject><subject>Neuromuscular electrical stimulation</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Original</subject><subject>Original Article</subject><subject>Pain</subject><subject>Patient comfort</subject><subject>Patient compliance</subject><subject>physiology</subject><subject>Plantar flexion</subject><subject>smart textiles</subject><subject>Sports Medicine</subject><subject>Textil och mode (generell)</subject><subject>Textiles and Fashion (General)</subject><subject>Thromboembolism</subject><issn>1439-6319</issn><issn>1439-6327</issn><issn>1439-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><recordid>eNqdk0tv1DAUhSMEoqXwB1igSGyQUODa1_FjharyqlTBBthaHseZcZvEwU5A7a_Hw0ynLRIFdWXL9zsnOde-RfGUwCsCIF4nAEZJBRQrqIkklbpX7BOGquJIxf3dnqi94lFKpwAgKZEPiz0UQIBT3C-OP7k5hn5Odu5MLF3n7BS9NV2ZJt_ns8mHofRDuTSxd8OUyjDmgr9wTdmGWNrQj503g3WPiwet6ZJ7sl0Piq_v3305-lidfP5wfHR4UllB2VTVDVdEYiOIQqB1I6RyBBaihUVLAVrTWCkdlwLBslaw2qGTKJFRTtu6pXhQVBvf9NON80KP0fcmnutgvN4eneWd04xxQUTm1V_5MYbmSnQppJftuYOW1DXkZJLfSUtrkIjk1oxv_bdDHeJSn00rjYhSQOZf_ptfLXS2rsV_01RJXNNvNnRGe9fY_Aii6W7GuVEZ_Eovww9NADkCsuzwYusQw_fZpUn3PlnXdWZwYU6aCsW4oqJeB3_-B3oa5jjk96SpZMC5EmzdWrqhbAwpRdfu_oaAXo-G3oyGzqOhf4-GVln07HqOneTaZeO2Lbk0LF28-vYttr8A1A0dSw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Juthberg, R.</creator><creator>Flodin, J.</creator><creator>Guo, L.</creator><creator>Rodriguez, S.</creator><creator>Persson, N. K.</creator><creator>Ackermann, P. W.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>ARHCE</scope><scope>D8T</scope><scope>DF9</scope><scope>ZZAVC</scope><scope>AFDQA</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0003-3488-1152</orcidid></search><sort><creationdate>2023</creationdate><title>Neuromuscular electrical stimulation in garments optimized for compliance</title><author>Juthberg, R. ; Flodin, J. ; Guo, L. ; Rodriguez, S. ; Persson, N. K. ; Ackermann, P. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c724t-5d69183d7193025d789e10b7f0bf200fadc88e68730c4f745e3e83834262f5f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ankle</topic><topic>Atrophy</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Electric Stimulation - methods</topic><topic>Electric stimulation therapy</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrical stimuli</topic><topic>Energy consumption</topic><topic>Female</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Leg</topic><topic>Medicin och hälsovetenskap</topic><topic>Muscle, Skeletal - physiology</topic><topic>Neuromuscular electrical stimulation</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Original</topic><topic>Original Article</topic><topic>Pain</topic><topic>Patient comfort</topic><topic>Patient compliance</topic><topic>physiology</topic><topic>Plantar flexion</topic><topic>smart textiles</topic><topic>Sports Medicine</topic><topic>Textil och mode (generell)</topic><topic>Textiles and Fashion (General)</topic><topic>Thromboembolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juthberg, R.</creatorcontrib><creatorcontrib>Flodin, J.</creatorcontrib><creatorcontrib>Guo, L.</creatorcontrib><creatorcontrib>Rodriguez, S.</creatorcontrib><creatorcontrib>Persson, N. K.</creatorcontrib><creatorcontrib>Ackermann, P. W.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan i Borås full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Högskolan i Borås</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>European journal of applied physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juthberg, R.</au><au>Flodin, J.</au><au>Guo, L.</au><au>Rodriguez, S.</au><au>Persson, N. K.</au><au>Ackermann, P. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromuscular electrical stimulation in garments optimized for compliance</atitle><jtitle>European journal of applied physiology</jtitle><stitle>Eur J Appl Physiol</stitle><addtitle>Eur J Appl Physiol</addtitle><date>2023</date><risdate>2023</risdate><volume>123</volume><issue>8</issue><spage>1739</spage><epage>1748</epage><pages>1739-1748</pages><issn>1439-6319</issn><issn>1439-6327</issn><eissn>1439-6327</eissn><abstract>Purpose
Physical inactivity is associated with muscle atrophy and venous thromboembolism, which may be prevented by neuromuscular electrical stimulation (NMES). This study aimed to investigate the effect on
discomfort, current amplitude
and
energy consumption
when varying the frequency and phase duration of low-intensity NMES (LI-NMES) via a sock with knitting-integrated transverse textile electrodes (TTE).
Methods
On eleven healthy participants (four females), calf-NMES via a TTE sock was applied with increasing intensity (mA) until ankle-plantar flexion at which point outcomes were compared when testing frequencies 1, 3, 10 and 36 Hz and phase durations 75, 150, 200, 300 and 400 µs. Discomfort was assessed with a numerical rating scale (NRS, 0–10) and energy consumption was calculated and expressed in milli-Joule (mJ). Significance set to
p
≤ 0.05.
Results
1 Hz yielded a median (inter-quartile range) NRS of 2.4 (1.0–3.4), significantly lower than both 3 Hz with NRS 2.8 (1.8–4.2), and 10 Hz with NRS 3.4 (1.4–5.4) (both
p
≤ .014). Each increase in tested frequency resulted in significantly higher energy consumption, e.g. 0.6 mJ (0.5–0.8) for 1 Hz vs 14.9 mJ (12.3–21.2) for 36 Hz (
p
= .003). Longer phase durations had no significant effect on discomfort despite generally requiring significantly lower current amplitudes. Phase durations 150, 200 and 400 µs required significantly lower energy consumption compared to 75 µs (all
p
≤ .037).
Conclusion
LI-NMES applied via a TTE sock produces a relevant plantar flexion of the ankle with the best comfort and lowest energy consumption using 1 Hz and phase durations 150, 200 or 400 µs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37010623</pmid><doi>10.1007/s00421-023-05181-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3488-1152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-6319 |
ispartof | European journal of applied physiology, 2023, Vol.123 (8), p.1739-1748 |
issn | 1439-6319 1439-6327 1439-6327 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_446717 |
source | MEDLINE; SpringerNature Journals; SWEPUB Freely available online |
subjects | Ankle Atrophy Biomedical and Life Sciences Biomedicine Electric Stimulation - methods Electric stimulation therapy Electric Stimulation Therapy - methods Electrical stimuli Energy consumption Female Human Physiology Humans Leg Medicin och hälsovetenskap Muscle, Skeletal - physiology Neuromuscular electrical stimulation Occupational Medicine/Industrial Medicine Original Original Article Pain Patient comfort Patient compliance physiology Plantar flexion smart textiles Sports Medicine Textil och mode (generell) Textiles and Fashion (General) Thromboembolism |
title | Neuromuscular electrical stimulation in garments optimized for compliance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromuscular%20electrical%20stimulation%20in%20garments%20optimized%20for%20compliance&rft.jtitle=European%20journal%20of%20applied%20physiology&rft.au=Juthberg,%20R.&rft.date=2023&rft.volume=123&rft.issue=8&rft.spage=1739&rft.epage=1748&rft.pages=1739-1748&rft.issn=1439-6319&rft.eissn=1439-6327&rft_id=info:doi/10.1007/s00421-023-05181-9&rft_dat=%3Cproquest_swepu%3E2794692751%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840669746&rft_id=info:pmid/37010623&rfr_iscdi=true |