Target parameters and bias in non-causal change-score analyses with measurement errors
In studies where the outcome is a change-score, it is often debated whether or not the analysis should adjust for the baseline score. When the aim is to make causal inference, it has been argued that the two analyses (adjusted vs. unadjusted) target different causal parameters, which may both be rel...
Gespeichert in:
Veröffentlicht in: | European journal of epidemiology 2023-05, Vol.38 (5), p.501-509 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 509 |
---|---|
container_issue | 5 |
container_start_page | 501 |
container_title | European journal of epidemiology |
container_volume | 38 |
creator | Sjölander, Arvid Gabriel, Erin E. Ciocănea-Teodorescu, Iuliana |
description | In studies where the outcome is a change-score, it is often debated whether or not the analysis should adjust for the baseline score. When the aim is to make causal inference, it has been argued that the two analyses (adjusted vs. unadjusted) target different causal parameters, which may both be relevant. However, these arguments are not applicable when the aim is to make predictions rather than to estimate causal effects. When the scores are measured with error, there have been attempts to quantify the bias resulting from adjustment for the (mis-)measured baseline score or lack thereof. However, these bias results have been derived under an unrealistically simple model, and assuming that the target parameter is the unadjusted (for the true baseline score) association, thus dismissing the adjusted association as a possibly relevant target parameter. In this paper we address these limitations. We argue that, even if the aim is to make predictions, there are two possibly relevant target parameters; one adjusted for the baseline score and one unadjusted. We consider both the simple case when there are no measurement errors, and the more complex case when the scores are measured with error. For the latter case, we consider a more realistic model than previous authors. Under this model we derive analytic expressions for the biases that arise when adjusting or not adjusting for the (mis-)measured baseline score, with respect to the two possible target parameters. Finally, we use these expressions to discuss when adjustment is warranted in change-score analyses. |
doi_str_mv | 10.1007/s10654-023-00996-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_446555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800148730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-35a6a5eb83df15f048a10d29d196ab147717ce4f8295b4ec934b42ccdee0bfa53</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERZfCH-CAInHhYhh_xfEJoQoKUiUuba_WxJnspuRjsZNW_fd4u0uhHHqy5feZd8bzMvZGwAcBYD8mAaXRHKTiAM6VXD9jK2Gs4lZW-jlbgXKKS-fgmL1M6RoAKnDmBTtWFrQSRq7Y1QXGNc3FFiMONFNMBY5NUXeYim4sxmnkAZeEfRE2OK6JpzBFygz2d4lScdvNm2IgTEukgca5oBinmF6xoxb7RK8P5wm7_Prl4vQbP_9x9v308zkPutQzVwZLNFRXqmmFaUFXKKCRrhGuxFpoa4UNpNtKOlNrCk7pWssQGiKoWzTqhPG9b7ql7VL7bewGjHd-ws4fnn7mG3mtS2N2_Kc9n5WBmpAnjtg_KnusjN3Gr6cbL0CUGqDMDu8PDnH6tVCa_dClQH2PI01L8rICELqyCjL67j_0elpi3tyOEiANWFCZknsqxCmlSO3DNAL8Lme_z9nnnP19zl7norf__uOh5E-wGVCHxWQp5xb_9n7C9jd6urU0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810250703</pqid></control><display><type>article</type><title>Target parameters and bias in non-causal change-score analyses with measurement errors</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sjölander, Arvid ; Gabriel, Erin E. ; Ciocănea-Teodorescu, Iuliana</creator><creatorcontrib>Sjölander, Arvid ; Gabriel, Erin E. ; Ciocănea-Teodorescu, Iuliana</creatorcontrib><description>In studies where the outcome is a change-score, it is often debated whether or not the analysis should adjust for the baseline score. When the aim is to make causal inference, it has been argued that the two analyses (adjusted vs. unadjusted) target different causal parameters, which may both be relevant. However, these arguments are not applicable when the aim is to make predictions rather than to estimate causal effects. When the scores are measured with error, there have been attempts to quantify the bias resulting from adjustment for the (mis-)measured baseline score or lack thereof. However, these bias results have been derived under an unrealistically simple model, and assuming that the target parameter is the unadjusted (for the true baseline score) association, thus dismissing the adjusted association as a possibly relevant target parameter. In this paper we address these limitations. We argue that, even if the aim is to make predictions, there are two possibly relevant target parameters; one adjusted for the baseline score and one unadjusted. We consider both the simple case when there are no measurement errors, and the more complex case when the scores are measured with error. For the latter case, we consider a more realistic model than previous authors. Under this model we derive analytic expressions for the biases that arise when adjusting or not adjusting for the (mis-)measured baseline score, with respect to the two possible target parameters. Finally, we use these expressions to discuss when adjustment is warranted in change-score analyses.</description><identifier>ISSN: 0393-2990</identifier><identifier>EISSN: 1573-7284</identifier><identifier>DOI: 10.1007/s10654-023-00996-4</identifier><identifier>PMID: 37043152</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adjustment ; Bias ; Cardiology ; Causality ; Cognition & reasoning ; Emotional regulation ; Epidemiology ; Error analysis ; Humans ; Infectious Diseases ; Mathematical models ; Medicine ; Medicine & Public Health ; Methods ; Oncology ; Parameters ; Public Health</subject><ispartof>European journal of epidemiology, 2023-05, Vol.38 (5), p.501-509</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c464t-35a6a5eb83df15f048a10d29d196ab147717ce4f8295b4ec934b42ccdee0bfa53</cites><orcidid>0000-0001-5226-6685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10654-023-00996-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10654-023-00996-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37043152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:152871080$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sjölander, Arvid</creatorcontrib><creatorcontrib>Gabriel, Erin E.</creatorcontrib><creatorcontrib>Ciocănea-Teodorescu, Iuliana</creatorcontrib><title>Target parameters and bias in non-causal change-score analyses with measurement errors</title><title>European journal of epidemiology</title><addtitle>Eur J Epidemiol</addtitle><addtitle>Eur J Epidemiol</addtitle><description>In studies where the outcome is a change-score, it is often debated whether or not the analysis should adjust for the baseline score. When the aim is to make causal inference, it has been argued that the two analyses (adjusted vs. unadjusted) target different causal parameters, which may both be relevant. However, these arguments are not applicable when the aim is to make predictions rather than to estimate causal effects. When the scores are measured with error, there have been attempts to quantify the bias resulting from adjustment for the (mis-)measured baseline score or lack thereof. However, these bias results have been derived under an unrealistically simple model, and assuming that the target parameter is the unadjusted (for the true baseline score) association, thus dismissing the adjusted association as a possibly relevant target parameter. In this paper we address these limitations. We argue that, even if the aim is to make predictions, there are two possibly relevant target parameters; one adjusted for the baseline score and one unadjusted. We consider both the simple case when there are no measurement errors, and the more complex case when the scores are measured with error. For the latter case, we consider a more realistic model than previous authors. Under this model we derive analytic expressions for the biases that arise when adjusting or not adjusting for the (mis-)measured baseline score, with respect to the two possible target parameters. Finally, we use these expressions to discuss when adjustment is warranted in change-score analyses.</description><subject>Adjustment</subject><subject>Bias</subject><subject>Cardiology</subject><subject>Causality</subject><subject>Cognition & reasoning</subject><subject>Emotional regulation</subject><subject>Epidemiology</subject><subject>Error analysis</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Methods</subject><subject>Oncology</subject><subject>Parameters</subject><subject>Public Health</subject><issn>0393-2990</issn><issn>1573-7284</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNp9kU1v1DAQhi1ERZfCH-CAInHhYhh_xfEJoQoKUiUuba_WxJnspuRjsZNW_fd4u0uhHHqy5feZd8bzMvZGwAcBYD8mAaXRHKTiAM6VXD9jK2Gs4lZW-jlbgXKKS-fgmL1M6RoAKnDmBTtWFrQSRq7Y1QXGNc3FFiMONFNMBY5NUXeYim4sxmnkAZeEfRE2OK6JpzBFygz2d4lScdvNm2IgTEukgca5oBinmF6xoxb7RK8P5wm7_Prl4vQbP_9x9v308zkPutQzVwZLNFRXqmmFaUFXKKCRrhGuxFpoa4UNpNtKOlNrCk7pWssQGiKoWzTqhPG9b7ql7VL7bewGjHd-ws4fnn7mG3mtS2N2_Kc9n5WBmpAnjtg_KnusjN3Gr6cbL0CUGqDMDu8PDnH6tVCa_dClQH2PI01L8rICELqyCjL67j_0elpi3tyOEiANWFCZknsqxCmlSO3DNAL8Lme_z9nnnP19zl7norf__uOh5E-wGVCHxWQp5xb_9n7C9jd6urU0</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Sjölander, Arvid</creator><creator>Gabriel, Erin E.</creator><creator>Ciocănea-Teodorescu, Iuliana</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T2</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-5226-6685</orcidid></search><sort><creationdate>20230501</creationdate><title>Target parameters and bias in non-causal change-score analyses with measurement errors</title><author>Sjölander, Arvid ; Gabriel, Erin E. ; Ciocănea-Teodorescu, Iuliana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-35a6a5eb83df15f048a10d29d196ab147717ce4f8295b4ec934b42ccdee0bfa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adjustment</topic><topic>Bias</topic><topic>Cardiology</topic><topic>Causality</topic><topic>Cognition & reasoning</topic><topic>Emotional regulation</topic><topic>Epidemiology</topic><topic>Error analysis</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Methods</topic><topic>Oncology</topic><topic>Parameters</topic><topic>Public Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sjölander, Arvid</creatorcontrib><creatorcontrib>Gabriel, Erin E.</creatorcontrib><creatorcontrib>Ciocănea-Teodorescu, Iuliana</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>European journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sjölander, Arvid</au><au>Gabriel, Erin E.</au><au>Ciocănea-Teodorescu, Iuliana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Target parameters and bias in non-causal change-score analyses with measurement errors</atitle><jtitle>European journal of epidemiology</jtitle><stitle>Eur J Epidemiol</stitle><addtitle>Eur J Epidemiol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>38</volume><issue>5</issue><spage>501</spage><epage>509</epage><pages>501-509</pages><issn>0393-2990</issn><eissn>1573-7284</eissn><abstract>In studies where the outcome is a change-score, it is often debated whether or not the analysis should adjust for the baseline score. When the aim is to make causal inference, it has been argued that the two analyses (adjusted vs. unadjusted) target different causal parameters, which may both be relevant. However, these arguments are not applicable when the aim is to make predictions rather than to estimate causal effects. When the scores are measured with error, there have been attempts to quantify the bias resulting from adjustment for the (mis-)measured baseline score or lack thereof. However, these bias results have been derived under an unrealistically simple model, and assuming that the target parameter is the unadjusted (for the true baseline score) association, thus dismissing the adjusted association as a possibly relevant target parameter. In this paper we address these limitations. We argue that, even if the aim is to make predictions, there are two possibly relevant target parameters; one adjusted for the baseline score and one unadjusted. We consider both the simple case when there are no measurement errors, and the more complex case when the scores are measured with error. For the latter case, we consider a more realistic model than previous authors. Under this model we derive analytic expressions for the biases that arise when adjusting or not adjusting for the (mis-)measured baseline score, with respect to the two possible target parameters. Finally, we use these expressions to discuss when adjustment is warranted in change-score analyses.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37043152</pmid><doi>10.1007/s10654-023-00996-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5226-6685</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0393-2990 |
ispartof | European journal of epidemiology, 2023-05, Vol.38 (5), p.501-509 |
issn | 0393-2990 1573-7284 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_446555 |
source | MEDLINE; SWEPUB Freely available online; SpringerLink Journals - AutoHoldings |
subjects | Adjustment Bias Cardiology Causality Cognition & reasoning Emotional regulation Epidemiology Error analysis Humans Infectious Diseases Mathematical models Medicine Medicine & Public Health Methods Oncology Parameters Public Health |
title | Target parameters and bias in non-causal change-score analyses with measurement errors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Target%20parameters%20and%20bias%20in%20non-causal%20change-score%20analyses%20with%20measurement%20errors&rft.jtitle=European%20journal%20of%20epidemiology&rft.au=Sj%C3%B6lander,%20Arvid&rft.date=2023-05-01&rft.volume=38&rft.issue=5&rft.spage=501&rft.epage=509&rft.pages=501-509&rft.issn=0393-2990&rft.eissn=1573-7284&rft_id=info:doi/10.1007/s10654-023-00996-4&rft_dat=%3Cproquest_swepu%3E2800148730%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810250703&rft_id=info:pmid/37043152&rfr_iscdi=true |