Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle

Exercise training prevents age‐related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late‐life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2024-01, Vol.23 (1), p.e13859-n/a
Hauptverfasser: Voisin, Sarah, Seale, Kirsten, Jacques, Macsue, Landen, Shanie, Harvey, Nicholas R., Haupt, Larisa M., Griffiths, Lyn R., Ashton, Kevin J., Coffey, Vernon G., Thompson, Jamie‐Lee M., Doering, Thomas M., Lindholm, Malene E., Walsh, Colum, Davison, Gareth, Irwin, Rachelle, McBride, Catherine, Hansson, Ola, Asplund, Olof, Heikkinen, Aino E., Piirilä, Päivi, Pietiläinen, Kirsi H., Ollikainen, Miina, Blocquiaux, Sara, Thomis, Martine, Coletta, Dawn K., Sharples, Adam P., Eynon, Nir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e13859
container_title Aging cell
container_volume 23
creator Voisin, Sarah
Seale, Kirsten
Jacques, Macsue
Landen, Shanie
Harvey, Nicholas R.
Haupt, Larisa M.
Griffiths, Lyn R.
Ashton, Kevin J.
Coffey, Vernon G.
Thompson, Jamie‐Lee M.
Doering, Thomas M.
Lindholm, Malene E.
Walsh, Colum
Davison, Gareth
Irwin, Rachelle
McBride, Catherine
Hansson, Ola
Asplund, Olof
Heikkinen, Aino E.
Piirilä, Päivi
Pietiläinen, Kirsi H.
Ollikainen, Miina
Blocquiaux, Sara
Thomis, Martine
Coletta, Dawn K.
Sharples, Adam P.
Eynon, Nir
description Exercise training prevents age‐related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late‐life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta‐analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse “ages” the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age‐related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity. Higher fitness levels were associated with attenuated differential methylation and transcription during aging in human muscle. Furthermore, exercise training targets many of the age‐related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best exercise regimes to optimize longevity.
doi_str_mv 10.1111/acel.13859
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_446182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912032827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5569-250fa79aabf3be35f32109e0ba1a03ceb3d578bd881c154167c7309c92919aae3</originalsourceid><addsrcrecordid>eNp9kluL1DAUgIso7kVf_AES8EUWuubSNsmTLMN4gQFf9Dkk6elOdtNmTNod59-b2nFwBQ0ccjj58hFOTlG8Ivia5PVOW_DXhIlaPinOScWrUnLaPD3lRJwVFyndYUy4xOx5ccY4oUJU7LzQ6x8QrUuAXEI6pWCdHqFFezdu0SFMwy1E1MO4PfjQA9JDi8aoh2Sj241zZRdD5zwk5Aa0nXo9oHQPHkbtUT8l6-FF8azTPsHL435ZfPuw_rr6VG6-fPy8utmUtq4bWdIad5pLrU3HDLC6Y5RgCdhoojGzYFhbc2FaIYgldUUabjnD0koqSb4F7LIoF2_aw24yahddr-NBBe3UsXSfM1BV1RBBM7_5J--nXQ6TY77AmKkl0TmhmqnKiEYJa6wiLZZCM2GFbLLu_aLLrh5aC0Puk39kfXwyuK26DQ-KYM4bQmfD26Mhhu8TpFH1LuWv9XqAMCVFBRa14FjM6Ju_0LswxSG3V-V2UMyooDxTVwtlY0gpQnd6DcFqnhw1T476NTkZfv3n-0_o71HJAFmAff7uw39U6ma13izSn2Pu0HE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912032827</pqid></control><display><type>article</type><title>Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><creator>Voisin, Sarah ; Seale, Kirsten ; Jacques, Macsue ; Landen, Shanie ; Harvey, Nicholas R. ; Haupt, Larisa M. ; Griffiths, Lyn R. ; Ashton, Kevin J. ; Coffey, Vernon G. ; Thompson, Jamie‐Lee M. ; Doering, Thomas M. ; Lindholm, Malene E. ; Walsh, Colum ; Davison, Gareth ; Irwin, Rachelle ; McBride, Catherine ; Hansson, Ola ; Asplund, Olof ; Heikkinen, Aino E. ; Piirilä, Päivi ; Pietiläinen, Kirsi H. ; Ollikainen, Miina ; Blocquiaux, Sara ; Thomis, Martine ; Coletta, Dawn K. ; Sharples, Adam P. ; Eynon, Nir</creator><creatorcontrib>Voisin, Sarah ; Seale, Kirsten ; Jacques, Macsue ; Landen, Shanie ; Harvey, Nicholas R. ; Haupt, Larisa M. ; Griffiths, Lyn R. ; Ashton, Kevin J. ; Coffey, Vernon G. ; Thompson, Jamie‐Lee M. ; Doering, Thomas M. ; Lindholm, Malene E. ; Walsh, Colum ; Davison, Gareth ; Irwin, Rachelle ; McBride, Catherine ; Hansson, Ola ; Asplund, Olof ; Heikkinen, Aino E. ; Piirilä, Päivi ; Pietiläinen, Kirsi H. ; Ollikainen, Miina ; Blocquiaux, Sara ; Thomis, Martine ; Coletta, Dawn K. ; Sharples, Adam P. ; Eynon, Nir</creatorcontrib><description>Exercise training prevents age‐related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late‐life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta‐analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse “ages” the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age‐related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity. Higher fitness levels were associated with attenuated differential methylation and transcription during aging in human muscle. Furthermore, exercise training targets many of the age‐related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best exercise regimes to optimize longevity.</description><identifier>ISSN: 1474-9718</identifier><identifier>ISSN: 1474-9726</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.13859</identifier><identifier>PMID: 37128843</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Age ; Aging ; Basic Medicine ; Cardiorespiratory fitness ; Datasets ; DNA methylation ; Epigenetics ; Epigenome - genetics ; Exercise ; Exercise - physiology ; exercise training ; Fitness training programs ; Fysiologi ; Gene expression ; Gene Expression Profiling ; human skeletal muscle ; Humans ; Laboratories ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Medicinska och farmaceutiska grundvetenskaper ; meta‐analysis ; Mortality ; mRNA expression ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Online data bases ; Physical fitness ; Physical training ; Physiology ; Senescence ; Skeletal muscle ; Stem cells ; Strength training ; Transcriptome - genetics ; Transcriptomes ; Transcriptomics</subject><ispartof>Aging cell, 2024-01, Vol.23 (1), p.e13859-n/a</ispartof><rights>2023 The Authors. published by Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Aging Cell published by Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5569-250fa79aabf3be35f32109e0ba1a03ceb3d578bd881c154167c7309c92919aae3</citedby><cites>FETCH-LOGICAL-c5569-250fa79aabf3be35f32109e0ba1a03ceb3d578bd881c154167c7309c92919aae3</cites><orcidid>0000-0002-4074-7083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776126/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776126/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37128843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/33b591ae-32a3-4b86-8cbc-1d098a38c896$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:152550788$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Voisin, Sarah</creatorcontrib><creatorcontrib>Seale, Kirsten</creatorcontrib><creatorcontrib>Jacques, Macsue</creatorcontrib><creatorcontrib>Landen, Shanie</creatorcontrib><creatorcontrib>Harvey, Nicholas R.</creatorcontrib><creatorcontrib>Haupt, Larisa M.</creatorcontrib><creatorcontrib>Griffiths, Lyn R.</creatorcontrib><creatorcontrib>Ashton, Kevin J.</creatorcontrib><creatorcontrib>Coffey, Vernon G.</creatorcontrib><creatorcontrib>Thompson, Jamie‐Lee M.</creatorcontrib><creatorcontrib>Doering, Thomas M.</creatorcontrib><creatorcontrib>Lindholm, Malene E.</creatorcontrib><creatorcontrib>Walsh, Colum</creatorcontrib><creatorcontrib>Davison, Gareth</creatorcontrib><creatorcontrib>Irwin, Rachelle</creatorcontrib><creatorcontrib>McBride, Catherine</creatorcontrib><creatorcontrib>Hansson, Ola</creatorcontrib><creatorcontrib>Asplund, Olof</creatorcontrib><creatorcontrib>Heikkinen, Aino E.</creatorcontrib><creatorcontrib>Piirilä, Päivi</creatorcontrib><creatorcontrib>Pietiläinen, Kirsi H.</creatorcontrib><creatorcontrib>Ollikainen, Miina</creatorcontrib><creatorcontrib>Blocquiaux, Sara</creatorcontrib><creatorcontrib>Thomis, Martine</creatorcontrib><creatorcontrib>Coletta, Dawn K.</creatorcontrib><creatorcontrib>Sharples, Adam P.</creatorcontrib><creatorcontrib>Eynon, Nir</creatorcontrib><title>Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Exercise training prevents age‐related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late‐life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta‐analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse “ages” the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age‐related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity. Higher fitness levels were associated with attenuated differential methylation and transcription during aging in human muscle. Furthermore, exercise training targets many of the age‐related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best exercise regimes to optimize longevity.</description><subject>Age</subject><subject>Aging</subject><subject>Basic Medicine</subject><subject>Cardiorespiratory fitness</subject><subject>Datasets</subject><subject>DNA methylation</subject><subject>Epigenetics</subject><subject>Epigenome - genetics</subject><subject>Exercise</subject><subject>Exercise - physiology</subject><subject>exercise training</subject><subject>Fitness training programs</subject><subject>Fysiologi</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>human skeletal muscle</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicinska och farmaceutiska grundvetenskaper</subject><subject>meta‐analysis</subject><subject>Mortality</subject><subject>mRNA expression</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Online data bases</subject><subject>Physical fitness</subject><subject>Physical training</subject><subject>Physiology</subject><subject>Senescence</subject><subject>Skeletal muscle</subject><subject>Stem cells</subject><subject>Strength training</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>1474-9718</issn><issn>1474-9726</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><recordid>eNp9kluL1DAUgIso7kVf_AES8EUWuubSNsmTLMN4gQFf9Dkk6elOdtNmTNod59-b2nFwBQ0ccjj58hFOTlG8Ivia5PVOW_DXhIlaPinOScWrUnLaPD3lRJwVFyndYUy4xOx5ccY4oUJU7LzQ6x8QrUuAXEI6pWCdHqFFezdu0SFMwy1E1MO4PfjQA9JDi8aoh2Sj241zZRdD5zwk5Aa0nXo9oHQPHkbtUT8l6-FF8azTPsHL435ZfPuw_rr6VG6-fPy8utmUtq4bWdIad5pLrU3HDLC6Y5RgCdhoojGzYFhbc2FaIYgldUUabjnD0koqSb4F7LIoF2_aw24yahddr-NBBe3UsXSfM1BV1RBBM7_5J--nXQ6TY77AmKkl0TmhmqnKiEYJa6wiLZZCM2GFbLLu_aLLrh5aC0Puk39kfXwyuK26DQ-KYM4bQmfD26Mhhu8TpFH1LuWv9XqAMCVFBRa14FjM6Ju_0LswxSG3V-V2UMyooDxTVwtlY0gpQnd6DcFqnhw1T476NTkZfv3n-0_o71HJAFmAff7uw39U6ma13izSn2Pu0HE</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Voisin, Sarah</creator><creator>Seale, Kirsten</creator><creator>Jacques, Macsue</creator><creator>Landen, Shanie</creator><creator>Harvey, Nicholas R.</creator><creator>Haupt, Larisa M.</creator><creator>Griffiths, Lyn R.</creator><creator>Ashton, Kevin J.</creator><creator>Coffey, Vernon G.</creator><creator>Thompson, Jamie‐Lee M.</creator><creator>Doering, Thomas M.</creator><creator>Lindholm, Malene E.</creator><creator>Walsh, Colum</creator><creator>Davison, Gareth</creator><creator>Irwin, Rachelle</creator><creator>McBride, Catherine</creator><creator>Hansson, Ola</creator><creator>Asplund, Olof</creator><creator>Heikkinen, Aino E.</creator><creator>Piirilä, Päivi</creator><creator>Pietiläinen, Kirsi H.</creator><creator>Ollikainen, Miina</creator><creator>Blocquiaux, Sara</creator><creator>Thomis, Martine</creator><creator>Coletta, Dawn K.</creator><creator>Sharples, Adam P.</creator><creator>Eynon, Nir</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-4074-7083</orcidid></search><sort><creationdate>202401</creationdate><title>Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle</title><author>Voisin, Sarah ; Seale, Kirsten ; Jacques, Macsue ; Landen, Shanie ; Harvey, Nicholas R. ; Haupt, Larisa M. ; Griffiths, Lyn R. ; Ashton, Kevin J. ; Coffey, Vernon G. ; Thompson, Jamie‐Lee M. ; Doering, Thomas M. ; Lindholm, Malene E. ; Walsh, Colum ; Davison, Gareth ; Irwin, Rachelle ; McBride, Catherine ; Hansson, Ola ; Asplund, Olof ; Heikkinen, Aino E. ; Piirilä, Päivi ; Pietiläinen, Kirsi H. ; Ollikainen, Miina ; Blocquiaux, Sara ; Thomis, Martine ; Coletta, Dawn K. ; Sharples, Adam P. ; Eynon, Nir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5569-250fa79aabf3be35f32109e0ba1a03ceb3d578bd881c154167c7309c92919aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Age</topic><topic>Aging</topic><topic>Basic Medicine</topic><topic>Cardiorespiratory fitness</topic><topic>Datasets</topic><topic>DNA methylation</topic><topic>Epigenetics</topic><topic>Epigenome - genetics</topic><topic>Exercise</topic><topic>Exercise - physiology</topic><topic>exercise training</topic><topic>Fitness training programs</topic><topic>Fysiologi</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>human skeletal muscle</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicinska och farmaceutiska grundvetenskaper</topic><topic>meta‐analysis</topic><topic>Mortality</topic><topic>mRNA expression</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Online data bases</topic><topic>Physical fitness</topic><topic>Physical training</topic><topic>Physiology</topic><topic>Senescence</topic><topic>Skeletal muscle</topic><topic>Stem cells</topic><topic>Strength training</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voisin, Sarah</creatorcontrib><creatorcontrib>Seale, Kirsten</creatorcontrib><creatorcontrib>Jacques, Macsue</creatorcontrib><creatorcontrib>Landen, Shanie</creatorcontrib><creatorcontrib>Harvey, Nicholas R.</creatorcontrib><creatorcontrib>Haupt, Larisa M.</creatorcontrib><creatorcontrib>Griffiths, Lyn R.</creatorcontrib><creatorcontrib>Ashton, Kevin J.</creatorcontrib><creatorcontrib>Coffey, Vernon G.</creatorcontrib><creatorcontrib>Thompson, Jamie‐Lee M.</creatorcontrib><creatorcontrib>Doering, Thomas M.</creatorcontrib><creatorcontrib>Lindholm, Malene E.</creatorcontrib><creatorcontrib>Walsh, Colum</creatorcontrib><creatorcontrib>Davison, Gareth</creatorcontrib><creatorcontrib>Irwin, Rachelle</creatorcontrib><creatorcontrib>McBride, Catherine</creatorcontrib><creatorcontrib>Hansson, Ola</creatorcontrib><creatorcontrib>Asplund, Olof</creatorcontrib><creatorcontrib>Heikkinen, Aino E.</creatorcontrib><creatorcontrib>Piirilä, Päivi</creatorcontrib><creatorcontrib>Pietiläinen, Kirsi H.</creatorcontrib><creatorcontrib>Ollikainen, Miina</creatorcontrib><creatorcontrib>Blocquiaux, Sara</creatorcontrib><creatorcontrib>Thomis, Martine</creatorcontrib><creatorcontrib>Coletta, Dawn K.</creatorcontrib><creatorcontrib>Sharples, Adam P.</creatorcontrib><creatorcontrib>Eynon, Nir</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voisin, Sarah</au><au>Seale, Kirsten</au><au>Jacques, Macsue</au><au>Landen, Shanie</au><au>Harvey, Nicholas R.</au><au>Haupt, Larisa M.</au><au>Griffiths, Lyn R.</au><au>Ashton, Kevin J.</au><au>Coffey, Vernon G.</au><au>Thompson, Jamie‐Lee M.</au><au>Doering, Thomas M.</au><au>Lindholm, Malene E.</au><au>Walsh, Colum</au><au>Davison, Gareth</au><au>Irwin, Rachelle</au><au>McBride, Catherine</au><au>Hansson, Ola</au><au>Asplund, Olof</au><au>Heikkinen, Aino E.</au><au>Piirilä, Päivi</au><au>Pietiläinen, Kirsi H.</au><au>Ollikainen, Miina</au><au>Blocquiaux, Sara</au><au>Thomis, Martine</au><au>Coletta, Dawn K.</au><au>Sharples, Adam P.</au><au>Eynon, Nir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2024-01</date><risdate>2024</risdate><volume>23</volume><issue>1</issue><spage>e13859</spage><epage>n/a</epage><pages>e13859-n/a</pages><issn>1474-9718</issn><issn>1474-9726</issn><eissn>1474-9726</eissn><abstract>Exercise training prevents age‐related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late‐life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta‐analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse “ages” the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age‐related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity. Higher fitness levels were associated with attenuated differential methylation and transcription during aging in human muscle. Furthermore, exercise training targets many of the age‐related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best exercise regimes to optimize longevity.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37128843</pmid><doi>10.1111/acel.13859</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4074-7083</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2024-01, Vol.23 (1), p.e13859-n/a
issn 1474-9718
1474-9726
1474-9726
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_446182
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; SWEPUB Freely available online
subjects Age
Aging
Basic Medicine
Cardiorespiratory fitness
Datasets
DNA methylation
Epigenetics
Epigenome - genetics
Exercise
Exercise - physiology
exercise training
Fitness training programs
Fysiologi
Gene expression
Gene Expression Profiling
human skeletal muscle
Humans
Laboratories
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
meta‐analysis
Mortality
mRNA expression
Muscle, Skeletal - metabolism
Musculoskeletal system
Online data bases
Physical fitness
Physical training
Physiology
Senescence
Skeletal muscle
Stem cells
Strength training
Transcriptome - genetics
Transcriptomes
Transcriptomics
title Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exercise%20is%20associated%20with%20younger%20methylome%20and%20transcriptome%20profiles%20in%20human%20skeletal%20muscle&rft.jtitle=Aging%20cell&rft.au=Voisin,%20Sarah&rft.date=2024-01&rft.volume=23&rft.issue=1&rft.spage=e13859&rft.epage=n/a&rft.pages=e13859-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.13859&rft_dat=%3Cproquest_swepu%3E2912032827%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912032827&rft_id=info:pmid/37128843&rfr_iscdi=true