Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism

Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2024, Vol.20 (1), p.45-57
Hauptverfasser: Borsa, Mariana, Obba, Sandrine, Richter, Felix C., Zhang, Hanlin, Riffelmacher, Thomas, Carrelha, Joana, Alsaleh, Ghada, Jacobsen, Sten Eirik W., Simon, Anna Katharina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 45
container_title Autophagy
container_volume 20
creator Borsa, Mariana
Obba, Sandrine
Richter, Felix C.
Zhang, Hanlin
Riffelmacher, Thomas
Carrelha, Joana
Alsaleh, Ghada
Jacobsen, Sten Eirik W.
Simon, Anna Katharina
description Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation. List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A 1 ; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage − (Lin − ), LY6A/Sca-1 + , KIT/c-Kit/CD117 + ; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.
doi_str_mv 10.1080/15548627.2023.2247310
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_445033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869612996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-12da61b13415d21534cdcfae7aadb6dc817d441ad8029c009ee9432a3340e2703</originalsourceid><addsrcrecordid>eNqdUk1v1DAQjRAVLYWfAMqRSxZ_xUlOUK0KRWpVCZUr1sSe7BqSONhJq_33ON2Ptody4OTR-L034-eXJO8oWVBSko80z0UpWbFghPEFY6LglLxITuZ-VkqevzzUrDhOXofwixAuy4q9So55IakgvDxJfp5NoxvWsNqkg8eA_hZDusYOYtdZHK1Ow4hdqrFtQ1pv0ggaPdje9qv06ub6-5JmHRoLI5p70NSCT6GH2rU2dG-SowbagG9352ny48v5zfIiu7z--m15dplpSYoxo8yApDXlguaG0ZwLbXQDWACYWhpd0sIIQcGUhFWakAqxEpwB54IgKwg_TbKtbrjDYarV4G0HfqMcWLVr_Y4VKiFywnnEV8_iB-_MA2lPZHvP_oMbH1Tkgol5z09bbgRE2zT20cz2qcSTm96u1crdKkrieFrmUeHDTsG7P1P8DNXZMBsPPbopKFbKSlJWVTJC8y1UexeCx-YwhxI1h0jtQ6TmEKldiCLv_eMlD6xHDnzeAmzfON_BnfOtUSNsWucbD722QfF_z_gL9Tbakw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869612996</pqid></control><display><type>article</type><title>Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>PubMed Central</source><creator>Borsa, Mariana ; Obba, Sandrine ; Richter, Felix C. ; Zhang, Hanlin ; Riffelmacher, Thomas ; Carrelha, Joana ; Alsaleh, Ghada ; Jacobsen, Sten Eirik W. ; Simon, Anna Katharina</creator><creatorcontrib>Borsa, Mariana ; Obba, Sandrine ; Richter, Felix C. ; Zhang, Hanlin ; Riffelmacher, Thomas ; Carrelha, Joana ; Alsaleh, Ghada ; Jacobsen, Sten Eirik W. ; Simon, Anna Katharina</creatorcontrib><description>Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation. List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A 1 ; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage − (Lin − ), LY6A/Sca-1 + , KIT/c-Kit/CD117 + ; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.</description><identifier>ISSN: 1554-8627</identifier><identifier>ISSN: 1554-8635</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2023.2247310</identifier><identifier>PMID: 37614038</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>amino acids ; Animals ; Autophagy ; hematopoietic stem cells ; Hematopoietic Stem Cells - metabolism ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Medicin och hälsovetenskap ; Mice ; MTOR ; Phosphatidylinositol 3-Kinases - metabolism ; rapamycin ; Research Paper ; Signal Transduction ; Sirolimus - pharmacology ; translation</subject><ispartof>Autophagy, 2024, Vol.20 (1), p.45-57</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-12da61b13415d21534cdcfae7aadb6dc817d441ad8029c009ee9432a3340e2703</citedby><cites>FETCH-LOGICAL-c607t-12da61b13415d21534cdcfae7aadb6dc817d441ad8029c009ee9432a3340e2703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761185/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761185/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,885,4023,27922,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37614038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:153754240$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:237614038$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Borsa, Mariana</creatorcontrib><creatorcontrib>Obba, Sandrine</creatorcontrib><creatorcontrib>Richter, Felix C.</creatorcontrib><creatorcontrib>Zhang, Hanlin</creatorcontrib><creatorcontrib>Riffelmacher, Thomas</creatorcontrib><creatorcontrib>Carrelha, Joana</creatorcontrib><creatorcontrib>Alsaleh, Ghada</creatorcontrib><creatorcontrib>Jacobsen, Sten Eirik W.</creatorcontrib><creatorcontrib>Simon, Anna Katharina</creatorcontrib><title>Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation. List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A 1 ; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage − (Lin − ), LY6A/Sca-1 + , KIT/c-Kit/CD117 + ; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.</description><subject>amino acids</subject><subject>Animals</subject><subject>Autophagy</subject><subject>hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Medicin och hälsovetenskap</subject><subject>Mice</subject><subject>MTOR</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>rapamycin</subject><subject>Research Paper</subject><subject>Signal Transduction</subject><subject>Sirolimus - pharmacology</subject><subject>translation</subject><issn>1554-8627</issn><issn>1554-8635</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqdUk1v1DAQjRAVLYWfAMqRSxZ_xUlOUK0KRWpVCZUr1sSe7BqSONhJq_33ON2Ptody4OTR-L034-eXJO8oWVBSko80z0UpWbFghPEFY6LglLxITuZ-VkqevzzUrDhOXofwixAuy4q9So55IakgvDxJfp5NoxvWsNqkg8eA_hZDusYOYtdZHK1Ow4hdqrFtQ1pv0ggaPdje9qv06ub6-5JmHRoLI5p70NSCT6GH2rU2dG-SowbagG9352ny48v5zfIiu7z--m15dplpSYoxo8yApDXlguaG0ZwLbXQDWACYWhpd0sIIQcGUhFWakAqxEpwB54IgKwg_TbKtbrjDYarV4G0HfqMcWLVr_Y4VKiFywnnEV8_iB-_MA2lPZHvP_oMbH1Tkgol5z09bbgRE2zT20cz2qcSTm96u1crdKkrieFrmUeHDTsG7P1P8DNXZMBsPPbopKFbKSlJWVTJC8y1UexeCx-YwhxI1h0jtQ6TmEKldiCLv_eMlD6xHDnzeAmzfON_BnfOtUSNsWucbD722QfF_z_gL9Tbakw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Borsa, Mariana</creator><creator>Obba, Sandrine</creator><creator>Richter, Felix C.</creator><creator>Zhang, Hanlin</creator><creator>Riffelmacher, Thomas</creator><creator>Carrelha, Joana</creator><creator>Alsaleh, Ghada</creator><creator>Jacobsen, Sten Eirik W.</creator><creator>Simon, Anna Katharina</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>2024</creationdate><title>Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism</title><author>Borsa, Mariana ; Obba, Sandrine ; Richter, Felix C. ; Zhang, Hanlin ; Riffelmacher, Thomas ; Carrelha, Joana ; Alsaleh, Ghada ; Jacobsen, Sten Eirik W. ; Simon, Anna Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-12da61b13415d21534cdcfae7aadb6dc817d441ad8029c009ee9432a3340e2703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>amino acids</topic><topic>Animals</topic><topic>Autophagy</topic><topic>hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Medicin och hälsovetenskap</topic><topic>Mice</topic><topic>MTOR</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>rapamycin</topic><topic>Research Paper</topic><topic>Signal Transduction</topic><topic>Sirolimus - pharmacology</topic><topic>translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borsa, Mariana</creatorcontrib><creatorcontrib>Obba, Sandrine</creatorcontrib><creatorcontrib>Richter, Felix C.</creatorcontrib><creatorcontrib>Zhang, Hanlin</creatorcontrib><creatorcontrib>Riffelmacher, Thomas</creatorcontrib><creatorcontrib>Carrelha, Joana</creatorcontrib><creatorcontrib>Alsaleh, Ghada</creatorcontrib><creatorcontrib>Jacobsen, Sten Eirik W.</creatorcontrib><creatorcontrib>Simon, Anna Katharina</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borsa, Mariana</au><au>Obba, Sandrine</au><au>Richter, Felix C.</au><au>Zhang, Hanlin</au><au>Riffelmacher, Thomas</au><au>Carrelha, Joana</au><au>Alsaleh, Ghada</au><au>Jacobsen, Sten Eirik W.</au><au>Simon, Anna Katharina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2024</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>45</spage><epage>57</epage><pages>45-57</pages><issn>1554-8627</issn><issn>1554-8635</issn><eissn>1554-8635</eissn><abstract>Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation. List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A 1 ; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage − (Lin − ), LY6A/Sca-1 + , KIT/c-Kit/CD117 + ; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>37614038</pmid><doi>10.1080/15548627.2023.2247310</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2024, Vol.20 (1), p.45-57
issn 1554-8627
1554-8635
1554-8635
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_445033
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; PubMed Central
subjects amino acids
Animals
Autophagy
hematopoietic stem cells
Hematopoietic Stem Cells - metabolism
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mechanistic Target of Rapamycin Complex 2 - metabolism
Medicin och hälsovetenskap
Mice
MTOR
Phosphatidylinositol 3-Kinases - metabolism
rapamycin
Research Paper
Signal Transduction
Sirolimus - pharmacology
translation
title Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20preserves%20hematopoietic%20stem%20cells%20by%20restraining%20MTORC1-mediated%20cellular%20anabolism&rft.jtitle=Autophagy&rft.au=Borsa,%20Mariana&rft.date=2024&rft.volume=20&rft.issue=1&rft.spage=45&rft.epage=57&rft.pages=45-57&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2023.2247310&rft_dat=%3Cproquest_swepu%3E2869612996%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869612996&rft_id=info:pmid/37614038&rfr_iscdi=true