Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism
Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drast...
Gespeichert in:
Veröffentlicht in: | Autophagy 2024, Vol.20 (1), p.45-57 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Autophagy |
container_volume | 20 |
creator | Borsa, Mariana Obba, Sandrine Richter, Felix C. Zhang, Hanlin Riffelmacher, Thomas Carrelha, Joana Alsaleh, Ghada Jacobsen, Sten Eirik W. Simon, Anna Katharina |
description | Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.
List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A
1
; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage
−
(Lin
−
), LY6A/Sca-1
+
, KIT/c-Kit/CD117
+
; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen. |
doi_str_mv | 10.1080/15548627.2023.2247310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_445033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869612996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-12da61b13415d21534cdcfae7aadb6dc817d441ad8029c009ee9432a3340e2703</originalsourceid><addsrcrecordid>eNqdUk1v1DAQjRAVLYWfAMqRSxZ_xUlOUK0KRWpVCZUr1sSe7BqSONhJq_33ON2Ptody4OTR-L034-eXJO8oWVBSko80z0UpWbFghPEFY6LglLxITuZ-VkqevzzUrDhOXofwixAuy4q9So55IakgvDxJfp5NoxvWsNqkg8eA_hZDusYOYtdZHK1Ow4hdqrFtQ1pv0ggaPdje9qv06ub6-5JmHRoLI5p70NSCT6GH2rU2dG-SowbagG9352ny48v5zfIiu7z--m15dplpSYoxo8yApDXlguaG0ZwLbXQDWACYWhpd0sIIQcGUhFWakAqxEpwB54IgKwg_TbKtbrjDYarV4G0HfqMcWLVr_Y4VKiFywnnEV8_iB-_MA2lPZHvP_oMbH1Tkgol5z09bbgRE2zT20cz2qcSTm96u1crdKkrieFrmUeHDTsG7P1P8DNXZMBsPPbopKFbKSlJWVTJC8y1UexeCx-YwhxI1h0jtQ6TmEKldiCLv_eMlD6xHDnzeAmzfON_BnfOtUSNsWucbD722QfF_z_gL9Tbakw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869612996</pqid></control><display><type>article</type><title>Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>PubMed Central</source><creator>Borsa, Mariana ; Obba, Sandrine ; Richter, Felix C. ; Zhang, Hanlin ; Riffelmacher, Thomas ; Carrelha, Joana ; Alsaleh, Ghada ; Jacobsen, Sten Eirik W. ; Simon, Anna Katharina</creator><creatorcontrib>Borsa, Mariana ; Obba, Sandrine ; Richter, Felix C. ; Zhang, Hanlin ; Riffelmacher, Thomas ; Carrelha, Joana ; Alsaleh, Ghada ; Jacobsen, Sten Eirik W. ; Simon, Anna Katharina</creatorcontrib><description>Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.
List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A
1
; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage
−
(Lin
−
), LY6A/Sca-1
+
, KIT/c-Kit/CD117
+
; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.</description><identifier>ISSN: 1554-8627</identifier><identifier>ISSN: 1554-8635</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2023.2247310</identifier><identifier>PMID: 37614038</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>amino acids ; Animals ; Autophagy ; hematopoietic stem cells ; Hematopoietic Stem Cells - metabolism ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Medicin och hälsovetenskap ; Mice ; MTOR ; Phosphatidylinositol 3-Kinases - metabolism ; rapamycin ; Research Paper ; Signal Transduction ; Sirolimus - pharmacology ; translation</subject><ispartof>Autophagy, 2024, Vol.20 (1), p.45-57</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-12da61b13415d21534cdcfae7aadb6dc817d441ad8029c009ee9432a3340e2703</citedby><cites>FETCH-LOGICAL-c607t-12da61b13415d21534cdcfae7aadb6dc817d441ad8029c009ee9432a3340e2703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761185/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761185/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,885,4023,27922,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37614038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:153754240$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:237614038$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Borsa, Mariana</creatorcontrib><creatorcontrib>Obba, Sandrine</creatorcontrib><creatorcontrib>Richter, Felix C.</creatorcontrib><creatorcontrib>Zhang, Hanlin</creatorcontrib><creatorcontrib>Riffelmacher, Thomas</creatorcontrib><creatorcontrib>Carrelha, Joana</creatorcontrib><creatorcontrib>Alsaleh, Ghada</creatorcontrib><creatorcontrib>Jacobsen, Sten Eirik W.</creatorcontrib><creatorcontrib>Simon, Anna Katharina</creatorcontrib><title>Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.
List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A
1
; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage
−
(Lin
−
), LY6A/Sca-1
+
, KIT/c-Kit/CD117
+
; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.</description><subject>amino acids</subject><subject>Animals</subject><subject>Autophagy</subject><subject>hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Medicin och hälsovetenskap</subject><subject>Mice</subject><subject>MTOR</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>rapamycin</subject><subject>Research Paper</subject><subject>Signal Transduction</subject><subject>Sirolimus - pharmacology</subject><subject>translation</subject><issn>1554-8627</issn><issn>1554-8635</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqdUk1v1DAQjRAVLYWfAMqRSxZ_xUlOUK0KRWpVCZUr1sSe7BqSONhJq_33ON2Ptody4OTR-L034-eXJO8oWVBSko80z0UpWbFghPEFY6LglLxITuZ-VkqevzzUrDhOXofwixAuy4q9So55IakgvDxJfp5NoxvWsNqkg8eA_hZDusYOYtdZHK1Ow4hdqrFtQ1pv0ggaPdje9qv06ub6-5JmHRoLI5p70NSCT6GH2rU2dG-SowbagG9352ny48v5zfIiu7z--m15dplpSYoxo8yApDXlguaG0ZwLbXQDWACYWhpd0sIIQcGUhFWakAqxEpwB54IgKwg_TbKtbrjDYarV4G0HfqMcWLVr_Y4VKiFywnnEV8_iB-_MA2lPZHvP_oMbH1Tkgol5z09bbgRE2zT20cz2qcSTm96u1crdKkrieFrmUeHDTsG7P1P8DNXZMBsPPbopKFbKSlJWVTJC8y1UexeCx-YwhxI1h0jtQ6TmEKldiCLv_eMlD6xHDnzeAmzfON_BnfOtUSNsWucbD722QfF_z_gL9Tbakw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Borsa, Mariana</creator><creator>Obba, Sandrine</creator><creator>Richter, Felix C.</creator><creator>Zhang, Hanlin</creator><creator>Riffelmacher, Thomas</creator><creator>Carrelha, Joana</creator><creator>Alsaleh, Ghada</creator><creator>Jacobsen, Sten Eirik W.</creator><creator>Simon, Anna Katharina</creator><general>Taylor & Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>2024</creationdate><title>Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism</title><author>Borsa, Mariana ; Obba, Sandrine ; Richter, Felix C. ; Zhang, Hanlin ; Riffelmacher, Thomas ; Carrelha, Joana ; Alsaleh, Ghada ; Jacobsen, Sten Eirik W. ; Simon, Anna Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-12da61b13415d21534cdcfae7aadb6dc817d441ad8029c009ee9432a3340e2703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>amino acids</topic><topic>Animals</topic><topic>Autophagy</topic><topic>hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Medicin och hälsovetenskap</topic><topic>Mice</topic><topic>MTOR</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>rapamycin</topic><topic>Research Paper</topic><topic>Signal Transduction</topic><topic>Sirolimus - pharmacology</topic><topic>translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borsa, Mariana</creatorcontrib><creatorcontrib>Obba, Sandrine</creatorcontrib><creatorcontrib>Richter, Felix C.</creatorcontrib><creatorcontrib>Zhang, Hanlin</creatorcontrib><creatorcontrib>Riffelmacher, Thomas</creatorcontrib><creatorcontrib>Carrelha, Joana</creatorcontrib><creatorcontrib>Alsaleh, Ghada</creatorcontrib><creatorcontrib>Jacobsen, Sten Eirik W.</creatorcontrib><creatorcontrib>Simon, Anna Katharina</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borsa, Mariana</au><au>Obba, Sandrine</au><au>Richter, Felix C.</au><au>Zhang, Hanlin</au><au>Riffelmacher, Thomas</au><au>Carrelha, Joana</au><au>Alsaleh, Ghada</au><au>Jacobsen, Sten Eirik W.</au><au>Simon, Anna Katharina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2024</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>45</spage><epage>57</epage><pages>45-57</pages><issn>1554-8627</issn><issn>1554-8635</issn><eissn>1554-8635</eissn><abstract>Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.
List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A
1
; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage
−
(Lin
−
), LY6A/Sca-1
+
, KIT/c-Kit/CD117
+
; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>37614038</pmid><doi>10.1080/15548627.2023.2247310</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8627 |
ispartof | Autophagy, 2024, Vol.20 (1), p.45-57 |
issn | 1554-8627 1554-8635 1554-8635 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_445033 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; PubMed Central |
subjects | amino acids Animals Autophagy hematopoietic stem cells Hematopoietic Stem Cells - metabolism Mechanistic Target of Rapamycin Complex 1 - metabolism Mechanistic Target of Rapamycin Complex 2 - metabolism Medicin och hälsovetenskap Mice MTOR Phosphatidylinositol 3-Kinases - metabolism rapamycin Research Paper Signal Transduction Sirolimus - pharmacology translation |
title | Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20preserves%20hematopoietic%20stem%20cells%20by%20restraining%20MTORC1-mediated%20cellular%20anabolism&rft.jtitle=Autophagy&rft.au=Borsa,%20Mariana&rft.date=2024&rft.volume=20&rft.issue=1&rft.spage=45&rft.epage=57&rft.pages=45-57&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2023.2247310&rft_dat=%3Cproquest_swepu%3E2869612996%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869612996&rft_id=info:pmid/37614038&rfr_iscdi=true |