Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise
We have demonstrated previously that dichloroacetate can attenuate skeletal muscle fatigue by up to 35% in a canine model of peripheral ischemia (Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, V. Worrall, I.A. Macdonald, and P.L. Greenhaff. 1996. J. Clin. Invest. 97:879-883). This was thought...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 1998-01, Vol.101 (1), p.79-85 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 79 |
container_title | The Journal of clinical investigation |
container_volume | 101 |
creator | Timmons, J A Gustafsson, T Sundberg, C J Jansson, E Hultman, E Kaijser, L Chwalbinska-Moneta, J Constantin-Teodosiu, D Macdonald, I A Greenhaff, P L |
description | We have demonstrated previously that dichloroacetate can attenuate skeletal muscle fatigue by up to 35% in a canine model of peripheral ischemia (Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, V. Worrall, I.A. Macdonald, and P.L. Greenhaff. 1996. J. Clin. Invest. 97:879-883). This was thought to be a consequence of dichloroacetate increasing acetyl group availability early during contraction. In this study we characterized the metabolic effects of dichloroacetate in a human model of peripheral muscle ischemia. On two separate occasions (control-saline or dichloroacetate infusion), nine subjects performed 8 min of single-leg knee extension exercise at an intensity aimed at achieving volitional exhaustion in approximately 8 min. During exercise each subject's lower limbs were exposed to 50 mmHg of positive pressure, which reduces blood flow by approximately 20%. Dichloroacetate increased resting muscle pyruvate dehydrogenase complex activation status by threefold and elevated acetylcarnitine concentration by fivefold. After 3 min of exercise, phosphocreatine degradation and lactate accumulation were both reduced by approximately 50% after dichloroacetate pretreatment, when compared with control conditions. However, after 8 min of exercise no differences existed between treatments. Therefore, it would appear that dichloroacetate can delay the accumulation of metabolites which lead to the development of skeletal muscle fatigue during ischemia but does not alter the metabolic profile when a maximal effort is approached. |
doi_str_mv | 10.1172/JCI1146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_436091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79634875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-6a0a146408f34a66671176cd6874f4a63e3bf021c463fd04e578c8c8a58295133</originalsourceid><addsrcrecordid>eNpVkV1PwjAUhnuhQUTjLzDplV5N27XrtgsvCPEDQ6KJeN2UcgaVbsO1Q_j3lrAQTS_anPOcj7cvQleU3FGaxvevozGlXJygPiExjfKUZWfo3LkvQijnCe-hXs7jQOR9tP5oZ843ygNWG2Wsmhlr_A5bUxrv8LItVYXdCix4ZXHZOm0B11szV95sAA-n77iBBVQQWpi6wspjvwxE5cDjusDG6SWURmPYQqONgwt0Wijr4LK7B-jz6XE6eokmb8_j0XASaU6oj4QiKmzISVYwroQQaZAm9FxkKS9CgAGbFUGd5oIVc8IhSTMdjkqyOE8oYwMUHfq6H1i3M7luTKmanayVkV1oFV4gORMkp4F_OPAhU8JcQxV-xf4r-5-pzFIu6o1MSJbw_bybrr6pv1twXpZBO1irKqhbJ9NcMJ6lSQBvD6BuaucaKI4zKJF7_2TnXyCv_6505Drz2C_w-poe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79634875</pqid></control><display><type>article</type><title>Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Timmons, J A ; Gustafsson, T ; Sundberg, C J ; Jansson, E ; Hultman, E ; Kaijser, L ; Chwalbinska-Moneta, J ; Constantin-Teodosiu, D ; Macdonald, I A ; Greenhaff, P L</creator><creatorcontrib>Timmons, J A ; Gustafsson, T ; Sundberg, C J ; Jansson, E ; Hultman, E ; Kaijser, L ; Chwalbinska-Moneta, J ; Constantin-Teodosiu, D ; Macdonald, I A ; Greenhaff, P L</creatorcontrib><description>We have demonstrated previously that dichloroacetate can attenuate skeletal muscle fatigue by up to 35% in a canine model of peripheral ischemia (Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, V. Worrall, I.A. Macdonald, and P.L. Greenhaff. 1996. J. Clin. Invest. 97:879-883). This was thought to be a consequence of dichloroacetate increasing acetyl group availability early during contraction. In this study we characterized the metabolic effects of dichloroacetate in a human model of peripheral muscle ischemia. On two separate occasions (control-saline or dichloroacetate infusion), nine subjects performed 8 min of single-leg knee extension exercise at an intensity aimed at achieving volitional exhaustion in approximately 8 min. During exercise each subject's lower limbs were exposed to 50 mmHg of positive pressure, which reduces blood flow by approximately 20%. Dichloroacetate increased resting muscle pyruvate dehydrogenase complex activation status by threefold and elevated acetylcarnitine concentration by fivefold. After 3 min of exercise, phosphocreatine degradation and lactate accumulation were both reduced by approximately 50% after dichloroacetate pretreatment, when compared with control conditions. However, after 8 min of exercise no differences existed between treatments. Therefore, it would appear that dichloroacetate can delay the accumulation of metabolites which lead to the development of skeletal muscle fatigue during ischemia but does not alter the metabolic profile when a maximal effort is approached.</description><identifier>ISSN: 0021-9738</identifier><identifier>DOI: 10.1172/JCI1146</identifier><identifier>PMID: 9421469</identifier><language>eng</language><publisher>United States</publisher><subject>Acetylcarnitine - metabolism ; Adenosine Triphosphate - metabolism ; Adult ; Blood Glucose - metabolism ; Cardiovascular Physiological Phenomena ; Dichloroacetic Acid - pharmacology ; Exercise - physiology ; Glycogen - metabolism ; Humans ; Lactic Acid - metabolism ; Male ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Phosphocreatine - metabolism ; Pyruvate Dehydrogenase Complex - metabolism ; Space life sciences ; Time Factors</subject><ispartof>The Journal of clinical investigation, 1998-01, Vol.101 (1), p.79-85</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-6a0a146408f34a66671176cd6874f4a63e3bf021c463fd04e578c8c8a58295133</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC508543/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC508543/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,550,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9421469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:1932301$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Timmons, J A</creatorcontrib><creatorcontrib>Gustafsson, T</creatorcontrib><creatorcontrib>Sundberg, C J</creatorcontrib><creatorcontrib>Jansson, E</creatorcontrib><creatorcontrib>Hultman, E</creatorcontrib><creatorcontrib>Kaijser, L</creatorcontrib><creatorcontrib>Chwalbinska-Moneta, J</creatorcontrib><creatorcontrib>Constantin-Teodosiu, D</creatorcontrib><creatorcontrib>Macdonald, I A</creatorcontrib><creatorcontrib>Greenhaff, P L</creatorcontrib><title>Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>We have demonstrated previously that dichloroacetate can attenuate skeletal muscle fatigue by up to 35% in a canine model of peripheral ischemia (Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, V. Worrall, I.A. Macdonald, and P.L. Greenhaff. 1996. J. Clin. Invest. 97:879-883). This was thought to be a consequence of dichloroacetate increasing acetyl group availability early during contraction. In this study we characterized the metabolic effects of dichloroacetate in a human model of peripheral muscle ischemia. On two separate occasions (control-saline or dichloroacetate infusion), nine subjects performed 8 min of single-leg knee extension exercise at an intensity aimed at achieving volitional exhaustion in approximately 8 min. During exercise each subject's lower limbs were exposed to 50 mmHg of positive pressure, which reduces blood flow by approximately 20%. Dichloroacetate increased resting muscle pyruvate dehydrogenase complex activation status by threefold and elevated acetylcarnitine concentration by fivefold. After 3 min of exercise, phosphocreatine degradation and lactate accumulation were both reduced by approximately 50% after dichloroacetate pretreatment, when compared with control conditions. However, after 8 min of exercise no differences existed between treatments. Therefore, it would appear that dichloroacetate can delay the accumulation of metabolites which lead to the development of skeletal muscle fatigue during ischemia but does not alter the metabolic profile when a maximal effort is approached.</description><subject>Acetylcarnitine - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adult</subject><subject>Blood Glucose - metabolism</subject><subject>Cardiovascular Physiological Phenomena</subject><subject>Dichloroacetic Acid - pharmacology</subject><subject>Exercise - physiology</subject><subject>Glycogen - metabolism</subject><subject>Humans</subject><subject>Lactic Acid - metabolism</subject><subject>Male</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Phosphocreatine - metabolism</subject><subject>Pyruvate Dehydrogenase Complex - metabolism</subject><subject>Space life sciences</subject><subject>Time Factors</subject><issn>0021-9738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNpVkV1PwjAUhnuhQUTjLzDplV5N27XrtgsvCPEDQ6KJeN2UcgaVbsO1Q_j3lrAQTS_anPOcj7cvQleU3FGaxvevozGlXJygPiExjfKUZWfo3LkvQijnCe-hXs7jQOR9tP5oZ843ygNWG2Wsmhlr_A5bUxrv8LItVYXdCix4ZXHZOm0B11szV95sAA-n77iBBVQQWpi6wspjvwxE5cDjusDG6SWURmPYQqONgwt0Wijr4LK7B-jz6XE6eokmb8_j0XASaU6oj4QiKmzISVYwroQQaZAm9FxkKS9CgAGbFUGd5oIVc8IhSTMdjkqyOE8oYwMUHfq6H1i3M7luTKmanayVkV1oFV4gORMkp4F_OPAhU8JcQxV-xf4r-5-pzFIu6o1MSJbw_bybrr6pv1twXpZBO1irKqhbJ9NcMJ6lSQBvD6BuaucaKI4zKJF7_2TnXyCv_6505Drz2C_w-poe</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Timmons, J A</creator><creator>Gustafsson, T</creator><creator>Sundberg, C J</creator><creator>Jansson, E</creator><creator>Hultman, E</creator><creator>Kaijser, L</creator><creator>Chwalbinska-Moneta, J</creator><creator>Constantin-Teodosiu, D</creator><creator>Macdonald, I A</creator><creator>Greenhaff, P L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>19980101</creationdate><title>Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise</title><author>Timmons, J A ; Gustafsson, T ; Sundberg, C J ; Jansson, E ; Hultman, E ; Kaijser, L ; Chwalbinska-Moneta, J ; Constantin-Teodosiu, D ; Macdonald, I A ; Greenhaff, P L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-6a0a146408f34a66671176cd6874f4a63e3bf021c463fd04e578c8c8a58295133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Acetylcarnitine - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adult</topic><topic>Blood Glucose - metabolism</topic><topic>Cardiovascular Physiological Phenomena</topic><topic>Dichloroacetic Acid - pharmacology</topic><topic>Exercise - physiology</topic><topic>Glycogen - metabolism</topic><topic>Humans</topic><topic>Lactic Acid - metabolism</topic><topic>Male</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Phosphocreatine - metabolism</topic><topic>Pyruvate Dehydrogenase Complex - metabolism</topic><topic>Space life sciences</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timmons, J A</creatorcontrib><creatorcontrib>Gustafsson, T</creatorcontrib><creatorcontrib>Sundberg, C J</creatorcontrib><creatorcontrib>Jansson, E</creatorcontrib><creatorcontrib>Hultman, E</creatorcontrib><creatorcontrib>Kaijser, L</creatorcontrib><creatorcontrib>Chwalbinska-Moneta, J</creatorcontrib><creatorcontrib>Constantin-Teodosiu, D</creatorcontrib><creatorcontrib>Macdonald, I A</creatorcontrib><creatorcontrib>Greenhaff, P L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timmons, J A</au><au>Gustafsson, T</au><au>Sundberg, C J</au><au>Jansson, E</au><au>Hultman, E</au><au>Kaijser, L</au><au>Chwalbinska-Moneta, J</au><au>Constantin-Teodosiu, D</au><au>Macdonald, I A</au><au>Greenhaff, P L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>1998-01-01</date><risdate>1998</risdate><volume>101</volume><issue>1</issue><spage>79</spage><epage>85</epage><pages>79-85</pages><issn>0021-9738</issn><abstract>We have demonstrated previously that dichloroacetate can attenuate skeletal muscle fatigue by up to 35% in a canine model of peripheral ischemia (Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, V. Worrall, I.A. Macdonald, and P.L. Greenhaff. 1996. J. Clin. Invest. 97:879-883). This was thought to be a consequence of dichloroacetate increasing acetyl group availability early during contraction. In this study we characterized the metabolic effects of dichloroacetate in a human model of peripheral muscle ischemia. On two separate occasions (control-saline or dichloroacetate infusion), nine subjects performed 8 min of single-leg knee extension exercise at an intensity aimed at achieving volitional exhaustion in approximately 8 min. During exercise each subject's lower limbs were exposed to 50 mmHg of positive pressure, which reduces blood flow by approximately 20%. Dichloroacetate increased resting muscle pyruvate dehydrogenase complex activation status by threefold and elevated acetylcarnitine concentration by fivefold. After 3 min of exercise, phosphocreatine degradation and lactate accumulation were both reduced by approximately 50% after dichloroacetate pretreatment, when compared with control conditions. However, after 8 min of exercise no differences existed between treatments. Therefore, it would appear that dichloroacetate can delay the accumulation of metabolites which lead to the development of skeletal muscle fatigue during ischemia but does not alter the metabolic profile when a maximal effort is approached.</abstract><cop>United States</cop><pmid>9421469</pmid><doi>10.1172/JCI1146</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 1998-01, Vol.101 (1), p.79-85 |
issn | 0021-9738 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_436091 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online |
subjects | Acetylcarnitine - metabolism Adenosine Triphosphate - metabolism Adult Blood Glucose - metabolism Cardiovascular Physiological Phenomena Dichloroacetic Acid - pharmacology Exercise - physiology Glycogen - metabolism Humans Lactic Acid - metabolism Male Muscle, Skeletal - blood supply Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism Phosphocreatine - metabolism Pyruvate Dehydrogenase Complex - metabolism Space life sciences Time Factors |
title | Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20availability%20limits%20human%20skeletal%20muscle%20oxidative%20ATP%20regeneration%20at%20the%20onset%20of%20ischemic%20exercise&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Timmons,%20J%20A&rft.date=1998-01-01&rft.volume=101&rft.issue=1&rft.spage=79&rft.epage=85&rft.pages=79-85&rft.issn=0021-9738&rft_id=info:doi/10.1172/JCI1146&rft_dat=%3Cproquest_swepu%3E79634875%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79634875&rft_id=info:pmid/9421469&rfr_iscdi=true |