Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm
The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in...
Gespeichert in:
Veröffentlicht in: | Holocene (Sevenoaks) 2019-04, Vol.29 (4), p.578-591 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 591 |
---|---|
container_issue | 4 |
container_start_page | 578 |
container_title | Holocene (Sevenoaks) |
container_volume | 29 |
creator | Myrstener, Erik Biester, Harald Bigler, Christian Lidberg, William Meyer-Jacob, Carsten Rydberg, Johan Bindler, Richard |
description | The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (~5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4–5.6, LW-TOC 15–18 mg L−1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From ~1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30–50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3–0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two. |
doi_str_mv | 10.1177/0959683618824741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_99678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0959683618824741</sage_id><sourcerecordid>2203676083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a3711fd745d6b2504237e17940254fa28f682fb663baaead82b008bcbb6bbec73</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonRxGt175LEraN8zADjrqn1I6lx0eqWHGbgXhoGrjDT5v4U_22ZXqPGpK5OyPvwhJeD0EtK3lAq5VvSd71QXFClWCtb-ghtaCtlQ3pKH6PNGjdr_hQ9K-WaECqUoBv08zze-JziZOMMAbuU5n32ccbJ4TJBCE0ZINjXeOfLnLKvBzz56OMWQxzxZOutsOTtAfuI553Fl7d29GWHTcr2XphtmXGocBXt7Tt8VaEvqewO8wwRmwA1dkuOMFgMpcqHnIZUpufoiYNQ7Itf8wR9-3B-dfapufj68fPZ6UUzcNXNDXBJqRtl243CsI60jEtLZd8S1rUOmHJCMWeE4AbAwqiYIUSZwRhhjB0kP0HN0Vtu7X4xutafIB90Aq9LWAzkdehidd8Lqf7Lv_ffT3XKW71Mi6adkryt_Ksjv8_px1I_Q1-ntW4omjHChRRE8UqRI1Xbl5Kt--2lRK8L1v8u-K-HwNb-kT7I3wHHBqnS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203676083</pqid></control><display><type>article</type><title>Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm</title><source>SAGE Complete</source><creator>Myrstener, Erik ; Biester, Harald ; Bigler, Christian ; Lidberg, William ; Meyer-Jacob, Carsten ; Rydberg, Johan ; Bindler, Richard</creator><creatorcontrib>Myrstener, Erik ; Biester, Harald ; Bigler, Christian ; Lidberg, William ; Meyer-Jacob, Carsten ; Rydberg, Johan ; Bindler, Richard ; Sveriges lantbruksuniversitet</creatorcontrib><description>The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (~5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4–5.6, LW-TOC 15–18 mg L−1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From ~1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30–50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3–0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two.</description><identifier>ISSN: 0959-6836</identifier><identifier>ISSN: 1477-0911</identifier><identifier>EISSN: 1477-0911</identifier><identifier>DOI: 10.1177/0959683618824741</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Analytical methods ; Background levels ; Boreal forests ; Charcoal ; Chlorophyll ; Chlorophylls ; Composition ; Cultivation ; Diatoms ; Dystrophic lakes ; Ecological footprint ; Ecological monitoring ; environmental change ; Environmental impact ; Forests ; Furnaces ; Geochemistry ; Geokemi ; Historical metallurgy ; Holocene ; human impacts ; Infrared spectra ; Infrared spectroscopy ; Lake deposits ; Lake sediments ; lake-water carbon ; Lakes ; Landscape ; Liming ; Medieval period ; Metallurgy ; Mining ; Near infrared radiation ; Organic carbon ; pH effects ; Pollen ; Profiles ; Sediment ; Sediments ; Silica ; Silicon dioxide ; Smelters ; Smelting ; Total organic carbon ; Water pollution ; Water quality</subject><ispartof>Holocene (Sevenoaks), 2019-04, Vol.29 (4), p.578-591</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a3711fd745d6b2504237e17940254fa28f682fb663baaead82b008bcbb6bbec73</citedby><cites>FETCH-LOGICAL-c385t-a3711fd745d6b2504237e17940254fa28f682fb663baaead82b008bcbb6bbec73</cites><orcidid>0000-0002-8208-496X ; 0000-0002-1049-7060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0959683618824741$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0959683618824741$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-158734$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/99678$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Myrstener, Erik</creatorcontrib><creatorcontrib>Biester, Harald</creatorcontrib><creatorcontrib>Bigler, Christian</creatorcontrib><creatorcontrib>Lidberg, William</creatorcontrib><creatorcontrib>Meyer-Jacob, Carsten</creatorcontrib><creatorcontrib>Rydberg, Johan</creatorcontrib><creatorcontrib>Bindler, Richard</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm</title><title>Holocene (Sevenoaks)</title><description>The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (~5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4–5.6, LW-TOC 15–18 mg L−1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From ~1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30–50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3–0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two.</description><subject>Analytical methods</subject><subject>Background levels</subject><subject>Boreal forests</subject><subject>Charcoal</subject><subject>Chlorophyll</subject><subject>Chlorophylls</subject><subject>Composition</subject><subject>Cultivation</subject><subject>Diatoms</subject><subject>Dystrophic lakes</subject><subject>Ecological footprint</subject><subject>Ecological monitoring</subject><subject>environmental change</subject><subject>Environmental impact</subject><subject>Forests</subject><subject>Furnaces</subject><subject>Geochemistry</subject><subject>Geokemi</subject><subject>Historical metallurgy</subject><subject>Holocene</subject><subject>human impacts</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>lake-water carbon</subject><subject>Lakes</subject><subject>Landscape</subject><subject>Liming</subject><subject>Medieval period</subject><subject>Metallurgy</subject><subject>Mining</subject><subject>Near infrared radiation</subject><subject>Organic carbon</subject><subject>pH effects</subject><subject>Pollen</subject><subject>Profiles</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Smelters</subject><subject>Smelting</subject><subject>Total organic carbon</subject><subject>Water pollution</subject><subject>Water quality</subject><issn>0959-6836</issn><issn>1477-0911</issn><issn>1477-0911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFSEUhonRxGt175LEraN8zADjrqn1I6lx0eqWHGbgXhoGrjDT5v4U_22ZXqPGpK5OyPvwhJeD0EtK3lAq5VvSd71QXFClWCtb-ghtaCtlQ3pKH6PNGjdr_hQ9K-WaECqUoBv08zze-JziZOMMAbuU5n32ccbJ4TJBCE0ZINjXeOfLnLKvBzz56OMWQxzxZOutsOTtAfuI553Fl7d29GWHTcr2XphtmXGocBXt7Tt8VaEvqewO8wwRmwA1dkuOMFgMpcqHnIZUpufoiYNQ7Itf8wR9-3B-dfapufj68fPZ6UUzcNXNDXBJqRtl243CsI60jEtLZd8S1rUOmHJCMWeE4AbAwqiYIUSZwRhhjB0kP0HN0Vtu7X4xutafIB90Aq9LWAzkdehidd8Lqf7Lv_ffT3XKW71Mi6adkryt_Ksjv8_px1I_Q1-ntW4omjHChRRE8UqRI1Xbl5Kt--2lRK8L1v8u-K-HwNb-kT7I3wHHBqnS</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Myrstener, Erik</creator><creator>Biester, Harald</creator><creator>Bigler, Christian</creator><creator>Lidberg, William</creator><creator>Meyer-Jacob, Carsten</creator><creator>Rydberg, Johan</creator><creator>Bindler, Richard</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><orcidid>https://orcid.org/0000-0002-8208-496X</orcidid><orcidid>https://orcid.org/0000-0002-1049-7060</orcidid></search><sort><creationdate>20190401</creationdate><title>Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm</title><author>Myrstener, Erik ; Biester, Harald ; Bigler, Christian ; Lidberg, William ; Meyer-Jacob, Carsten ; Rydberg, Johan ; Bindler, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a3711fd745d6b2504237e17940254fa28f682fb663baaead82b008bcbb6bbec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical methods</topic><topic>Background levels</topic><topic>Boreal forests</topic><topic>Charcoal</topic><topic>Chlorophyll</topic><topic>Chlorophylls</topic><topic>Composition</topic><topic>Cultivation</topic><topic>Diatoms</topic><topic>Dystrophic lakes</topic><topic>Ecological footprint</topic><topic>Ecological monitoring</topic><topic>environmental change</topic><topic>Environmental impact</topic><topic>Forests</topic><topic>Furnaces</topic><topic>Geochemistry</topic><topic>Geokemi</topic><topic>Historical metallurgy</topic><topic>Holocene</topic><topic>human impacts</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>lake-water carbon</topic><topic>Lakes</topic><topic>Landscape</topic><topic>Liming</topic><topic>Medieval period</topic><topic>Metallurgy</topic><topic>Mining</topic><topic>Near infrared radiation</topic><topic>Organic carbon</topic><topic>pH effects</topic><topic>Pollen</topic><topic>Profiles</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Smelters</topic><topic>Smelting</topic><topic>Total organic carbon</topic><topic>Water pollution</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myrstener, Erik</creatorcontrib><creatorcontrib>Biester, Harald</creatorcontrib><creatorcontrib>Bigler, Christian</creatorcontrib><creatorcontrib>Lidberg, William</creatorcontrib><creatorcontrib>Meyer-Jacob, Carsten</creatorcontrib><creatorcontrib>Rydberg, Johan</creatorcontrib><creatorcontrib>Bindler, Richard</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Holocene (Sevenoaks)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myrstener, Erik</au><au>Biester, Harald</au><au>Bigler, Christian</au><au>Lidberg, William</au><au>Meyer-Jacob, Carsten</au><au>Rydberg, Johan</au><au>Bindler, Richard</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm</atitle><jtitle>Holocene (Sevenoaks)</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><spage>578</spage><epage>591</epage><pages>578-591</pages><issn>0959-6836</issn><issn>1477-0911</issn><eissn>1477-0911</eissn><abstract>The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (~5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4–5.6, LW-TOC 15–18 mg L−1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From ~1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30–50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3–0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0959683618824741</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8208-496X</orcidid><orcidid>https://orcid.org/0000-0002-1049-7060</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-6836 |
ispartof | Holocene (Sevenoaks), 2019-04, Vol.29 (4), p.578-591 |
issn | 0959-6836 1477-0911 1477-0911 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_99678 |
source | SAGE Complete |
subjects | Analytical methods Background levels Boreal forests Charcoal Chlorophyll Chlorophylls Composition Cultivation Diatoms Dystrophic lakes Ecological footprint Ecological monitoring environmental change Environmental impact Forests Furnaces Geochemistry Geokemi Historical metallurgy Holocene human impacts Infrared spectra Infrared spectroscopy Lake deposits Lake sediments lake-water carbon Lakes Landscape Liming Medieval period Metallurgy Mining Near infrared radiation Organic carbon pH effects Pollen Profiles Sediment Sediments Silica Silicon dioxide Smelters Smelting Total organic carbon Water pollution Water quality |
title | Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20footprint%20of%20small-scale,%20historical%20mining%20and%20metallurgy%20in%20the%20Swedish%20boreal%20forest%20landscape:%20The%20Moshyttan%20blast%20furnace%20as%20microcosm&rft.jtitle=Holocene%20(Sevenoaks)&rft.au=Myrstener,%20Erik&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2019-04-01&rft.volume=29&rft.issue=4&rft.spage=578&rft.epage=591&rft.pages=578-591&rft.issn=0959-6836&rft.eissn=1477-0911&rft_id=info:doi/10.1177/0959683618824741&rft_dat=%3Cproquest_swepu%3E2203676083%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203676083&rft_id=info:pmid/&rft_sage_id=10.1177_0959683618824741&rfr_iscdi=true |