Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm

The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Holocene (Sevenoaks) 2019-04, Vol.29 (4), p.578-591
Hauptverfasser: Myrstener, Erik, Biester, Harald, Bigler, Christian, Lidberg, William, Meyer-Jacob, Carsten, Rydberg, Johan, Bindler, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 591
container_issue 4
container_start_page 578
container_title Holocene (Sevenoaks)
container_volume 29
creator Myrstener, Erik
Biester, Harald
Bigler, Christian
Lidberg, William
Meyer-Jacob, Carsten
Rydberg, Johan
Bindler, Richard
description The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (~5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4–5.6, LW-TOC 15–18 mg L−1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From ~1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30–50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3–0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two.
doi_str_mv 10.1177/0959683618824741
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_99678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0959683618824741</sage_id><sourcerecordid>2203676083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a3711fd745d6b2504237e17940254fa28f682fb663baaead82b008bcbb6bbec73</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonRxGt175LEraN8zADjrqn1I6lx0eqWHGbgXhoGrjDT5v4U_22ZXqPGpK5OyPvwhJeD0EtK3lAq5VvSd71QXFClWCtb-ghtaCtlQ3pKH6PNGjdr_hQ9K-WaECqUoBv08zze-JziZOMMAbuU5n32ccbJ4TJBCE0ZINjXeOfLnLKvBzz56OMWQxzxZOutsOTtAfuI553Fl7d29GWHTcr2XphtmXGocBXt7Tt8VaEvqewO8wwRmwA1dkuOMFgMpcqHnIZUpufoiYNQ7Itf8wR9-3B-dfapufj68fPZ6UUzcNXNDXBJqRtl243CsI60jEtLZd8S1rUOmHJCMWeE4AbAwqiYIUSZwRhhjB0kP0HN0Vtu7X4xutafIB90Aq9LWAzkdehidd8Lqf7Lv_ffT3XKW71Mi6adkryt_Ksjv8_px1I_Q1-ntW4omjHChRRE8UqRI1Xbl5Kt--2lRK8L1v8u-K-HwNb-kT7I3wHHBqnS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203676083</pqid></control><display><type>article</type><title>Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm</title><source>SAGE Complete</source><creator>Myrstener, Erik ; Biester, Harald ; Bigler, Christian ; Lidberg, William ; Meyer-Jacob, Carsten ; Rydberg, Johan ; Bindler, Richard</creator><creatorcontrib>Myrstener, Erik ; Biester, Harald ; Bigler, Christian ; Lidberg, William ; Meyer-Jacob, Carsten ; Rydberg, Johan ; Bindler, Richard ; Sveriges lantbruksuniversitet</creatorcontrib><description>The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (~5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4–5.6, LW-TOC 15–18 mg L−1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From ~1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30–50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3–0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two.</description><identifier>ISSN: 0959-6836</identifier><identifier>ISSN: 1477-0911</identifier><identifier>EISSN: 1477-0911</identifier><identifier>DOI: 10.1177/0959683618824741</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Analytical methods ; Background levels ; Boreal forests ; Charcoal ; Chlorophyll ; Chlorophylls ; Composition ; Cultivation ; Diatoms ; Dystrophic lakes ; Ecological footprint ; Ecological monitoring ; environmental change ; Environmental impact ; Forests ; Furnaces ; Geochemistry ; Geokemi ; Historical metallurgy ; Holocene ; human impacts ; Infrared spectra ; Infrared spectroscopy ; Lake deposits ; Lake sediments ; lake-water carbon ; Lakes ; Landscape ; Liming ; Medieval period ; Metallurgy ; Mining ; Near infrared radiation ; Organic carbon ; pH effects ; Pollen ; Profiles ; Sediment ; Sediments ; Silica ; Silicon dioxide ; Smelters ; Smelting ; Total organic carbon ; Water pollution ; Water quality</subject><ispartof>Holocene (Sevenoaks), 2019-04, Vol.29 (4), p.578-591</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a3711fd745d6b2504237e17940254fa28f682fb663baaead82b008bcbb6bbec73</citedby><cites>FETCH-LOGICAL-c385t-a3711fd745d6b2504237e17940254fa28f682fb663baaead82b008bcbb6bbec73</cites><orcidid>0000-0002-8208-496X ; 0000-0002-1049-7060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0959683618824741$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0959683618824741$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-158734$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/99678$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Myrstener, Erik</creatorcontrib><creatorcontrib>Biester, Harald</creatorcontrib><creatorcontrib>Bigler, Christian</creatorcontrib><creatorcontrib>Lidberg, William</creatorcontrib><creatorcontrib>Meyer-Jacob, Carsten</creatorcontrib><creatorcontrib>Rydberg, Johan</creatorcontrib><creatorcontrib>Bindler, Richard</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm</title><title>Holocene (Sevenoaks)</title><description>The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (~5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4–5.6, LW-TOC 15–18 mg L−1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From ~1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30–50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3–0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two.</description><subject>Analytical methods</subject><subject>Background levels</subject><subject>Boreal forests</subject><subject>Charcoal</subject><subject>Chlorophyll</subject><subject>Chlorophylls</subject><subject>Composition</subject><subject>Cultivation</subject><subject>Diatoms</subject><subject>Dystrophic lakes</subject><subject>Ecological footprint</subject><subject>Ecological monitoring</subject><subject>environmental change</subject><subject>Environmental impact</subject><subject>Forests</subject><subject>Furnaces</subject><subject>Geochemistry</subject><subject>Geokemi</subject><subject>Historical metallurgy</subject><subject>Holocene</subject><subject>human impacts</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>lake-water carbon</subject><subject>Lakes</subject><subject>Landscape</subject><subject>Liming</subject><subject>Medieval period</subject><subject>Metallurgy</subject><subject>Mining</subject><subject>Near infrared radiation</subject><subject>Organic carbon</subject><subject>pH effects</subject><subject>Pollen</subject><subject>Profiles</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Smelters</subject><subject>Smelting</subject><subject>Total organic carbon</subject><subject>Water pollution</subject><subject>Water quality</subject><issn>0959-6836</issn><issn>1477-0911</issn><issn>1477-0911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFSEUhonRxGt175LEraN8zADjrqn1I6lx0eqWHGbgXhoGrjDT5v4U_22ZXqPGpK5OyPvwhJeD0EtK3lAq5VvSd71QXFClWCtb-ghtaCtlQ3pKH6PNGjdr_hQ9K-WaECqUoBv08zze-JziZOMMAbuU5n32ccbJ4TJBCE0ZINjXeOfLnLKvBzz56OMWQxzxZOutsOTtAfuI553Fl7d29GWHTcr2XphtmXGocBXt7Tt8VaEvqewO8wwRmwA1dkuOMFgMpcqHnIZUpufoiYNQ7Itf8wR9-3B-dfapufj68fPZ6UUzcNXNDXBJqRtl243CsI60jEtLZd8S1rUOmHJCMWeE4AbAwqiYIUSZwRhhjB0kP0HN0Vtu7X4xutafIB90Aq9LWAzkdehidd8Lqf7Lv_ffT3XKW71Mi6adkryt_Ksjv8_px1I_Q1-ntW4omjHChRRE8UqRI1Xbl5Kt--2lRK8L1v8u-K-HwNb-kT7I3wHHBqnS</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Myrstener, Erik</creator><creator>Biester, Harald</creator><creator>Bigler, Christian</creator><creator>Lidberg, William</creator><creator>Meyer-Jacob, Carsten</creator><creator>Rydberg, Johan</creator><creator>Bindler, Richard</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><orcidid>https://orcid.org/0000-0002-8208-496X</orcidid><orcidid>https://orcid.org/0000-0002-1049-7060</orcidid></search><sort><creationdate>20190401</creationdate><title>Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm</title><author>Myrstener, Erik ; Biester, Harald ; Bigler, Christian ; Lidberg, William ; Meyer-Jacob, Carsten ; Rydberg, Johan ; Bindler, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a3711fd745d6b2504237e17940254fa28f682fb663baaead82b008bcbb6bbec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical methods</topic><topic>Background levels</topic><topic>Boreal forests</topic><topic>Charcoal</topic><topic>Chlorophyll</topic><topic>Chlorophylls</topic><topic>Composition</topic><topic>Cultivation</topic><topic>Diatoms</topic><topic>Dystrophic lakes</topic><topic>Ecological footprint</topic><topic>Ecological monitoring</topic><topic>environmental change</topic><topic>Environmental impact</topic><topic>Forests</topic><topic>Furnaces</topic><topic>Geochemistry</topic><topic>Geokemi</topic><topic>Historical metallurgy</topic><topic>Holocene</topic><topic>human impacts</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>lake-water carbon</topic><topic>Lakes</topic><topic>Landscape</topic><topic>Liming</topic><topic>Medieval period</topic><topic>Metallurgy</topic><topic>Mining</topic><topic>Near infrared radiation</topic><topic>Organic carbon</topic><topic>pH effects</topic><topic>Pollen</topic><topic>Profiles</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Smelters</topic><topic>Smelting</topic><topic>Total organic carbon</topic><topic>Water pollution</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myrstener, Erik</creatorcontrib><creatorcontrib>Biester, Harald</creatorcontrib><creatorcontrib>Bigler, Christian</creatorcontrib><creatorcontrib>Lidberg, William</creatorcontrib><creatorcontrib>Meyer-Jacob, Carsten</creatorcontrib><creatorcontrib>Rydberg, Johan</creatorcontrib><creatorcontrib>Bindler, Richard</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Holocene (Sevenoaks)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myrstener, Erik</au><au>Biester, Harald</au><au>Bigler, Christian</au><au>Lidberg, William</au><au>Meyer-Jacob, Carsten</au><au>Rydberg, Johan</au><au>Bindler, Richard</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm</atitle><jtitle>Holocene (Sevenoaks)</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><spage>578</spage><epage>591</epage><pages>578-591</pages><issn>0959-6836</issn><issn>1477-0911</issn><eissn>1477-0911</eissn><abstract>The history of mining and smelting and the associated pollution have been documented using lake sediments for decades, but the broader ecological implications are not well studied. We analyzed sediment profiles covering the past ~10,000 years from three lakes associated with an iron blast furnace in central Sweden, as an example of the many small-scale furnaces with historical roots in the medieval period. With a focus on long-term lake-water quality, we analyzed multiple proxies including geochemistry, pollen and charcoal, diatom composition and inferred pH, biogenic silica (bSi), visible near-infrared spectroscopy (VNIRS)-inferred lake-water total organic carbon (LW-TOC), and VNIRS-inferred sediment chlorophyll (sed-Chl). All three lakes had stable conditions during the middle Holocene (~5000 BCE to 1110 CE) typical of oligo-dystrophic lakes: pH 5.4–5.6, LW-TOC 15–18 mg L−1. The most important diatom taxa include, for example, Aulacoseira scalaris, Brachysira neoexilis, and Frustulia saxonica. From ~1150 CE, decreases in LW-TOC, bSi, and sed-Chl in all three lakes coincide with a suite of proxies indicating disturbance associated with local, small-scale agriculture, and the more widespread use of the landscape in the past (e.g. forest grazing, charcoal production). Most important was a decline in LW-TOC by 30–50% in the three lakes prior to the 20th century. In addition, the one lake (Fickeln) downstream of the smelter and main areas of cultivation experienced a shift in diatom composition (mainly increasing Asterionella formosa) and a 0.6 pH increase coinciding with increasing cereal pollen and signs of blast furnace activity. The pH did not change in the other two lakes in response to disturbance; however, these lakes show a slight increase (0.3–0.5 pH units) because of modern liming. LW-TOC has returned to background levels in the downstream lake and remains lower in the other two.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0959683618824741</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8208-496X</orcidid><orcidid>https://orcid.org/0000-0002-1049-7060</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-6836
ispartof Holocene (Sevenoaks), 2019-04, Vol.29 (4), p.578-591
issn 0959-6836
1477-0911
1477-0911
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_99678
source SAGE Complete
subjects Analytical methods
Background levels
Boreal forests
Charcoal
Chlorophyll
Chlorophylls
Composition
Cultivation
Diatoms
Dystrophic lakes
Ecological footprint
Ecological monitoring
environmental change
Environmental impact
Forests
Furnaces
Geochemistry
Geokemi
Historical metallurgy
Holocene
human impacts
Infrared spectra
Infrared spectroscopy
Lake deposits
Lake sediments
lake-water carbon
Lakes
Landscape
Liming
Medieval period
Metallurgy
Mining
Near infrared radiation
Organic carbon
pH effects
Pollen
Profiles
Sediment
Sediments
Silica
Silicon dioxide
Smelters
Smelting
Total organic carbon
Water pollution
Water quality
title Environmental footprint of small-scale, historical mining and metallurgy in the Swedish boreal forest landscape: The Moshyttan blast furnace as microcosm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20footprint%20of%20small-scale,%20historical%20mining%20and%20metallurgy%20in%20the%20Swedish%20boreal%20forest%20landscape:%20The%20Moshyttan%20blast%20furnace%20as%20microcosm&rft.jtitle=Holocene%20(Sevenoaks)&rft.au=Myrstener,%20Erik&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2019-04-01&rft.volume=29&rft.issue=4&rft.spage=578&rft.epage=591&rft.pages=578-591&rft.issn=0959-6836&rft.eissn=1477-0911&rft_id=info:doi/10.1177/0959683618824741&rft_dat=%3Cproquest_swepu%3E2203676083%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203676083&rft_id=info:pmid/&rft_sage_id=10.1177_0959683618824741&rfr_iscdi=true