Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates

Complex natural systems are affected by multiple anthropogenic stressors, and therefore indirect effects within food webs are increasingly investigated. In this context, dead organic matter (OM) or detritus provides a food source sustaining detrital food webs that recycle the retained energy through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquatic sciences 2018-10, Vol.80 (4), p.1-7, Article 44
Hauptverfasser: Zhai, Yujia, Brun, Nadja R., Bundschuh, Mirco, Schrama, Maarten, Hin, Eline, Vijver, Martina G., Hunting, Ellard R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 4
container_start_page 1
container_title Aquatic sciences
container_volume 80
creator Zhai, Yujia
Brun, Nadja R.
Bundschuh, Mirco
Schrama, Maarten
Hin, Eline
Vijver, Martina G.
Hunting, Ellard R.
description Complex natural systems are affected by multiple anthropogenic stressors, and therefore indirect effects within food webs are increasingly investigated. In this context, dead organic matter (OM) or detritus provides a food source sustaining detrital food webs that recycle the retained energy through microbial decomposition and invertebrate consumption. In aquatic environments, poorly water-soluble contaminants, including nanoparticles (NPs), quickly adsorb onto OM potentially modifying OM-associated microbial communities. Since invertebrates often depend on microbial conditioning to enhance OM quality, adverse effects on OM-associated microbial communities could potentially affect invertebrate performances. Therefore, this study assessed the effect of environmentally relevant concentrations of the model emerging contaminant, silver nanoparticles (AgNPs), on OM-associated microorganisms and subsequent indirect effects on growth of the invertebrate Asellus aquaticus . At low concentrations (0.8 ug/L), AgNPs inhibited activity and altered metabolic diversity of the OM-associated microbial community. This was observed to coincide with a negative effect on the growth of A. aquaticus due to antimicrobial properties, as a decreased growth was observed when offered AgNP-contaminated OM. When A. aquaticus were offered sterile OM in the absence of AgNPs, invertebrate growth was observed to be strongly retarded, illustrating the importance of microorganisms in the diet of this aquatic invertebrate. This outcome thus hints that environmentally relevant concentrations of AgNPs can indirectly affect the growth of aquatic invertebrates by affecting OM-associated microbial communities, and hence that microorganisms are an essential link in understanding bottom-up directed effects of chemical stressors in food webs.
doi_str_mv 10.1007/s00027-018-0594-z
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_98135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2104078085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-53414cfd3c495363cf58b4bc8acc868c41265f6779740cb0e191d8f5e9906d163</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYsouK5-AG8Fz9GZNmmToyz-gxUv6jWkaSJZum03aZX105vSRU-e3kzy3mP4JcklwjUClDcBALKSAHICTFDyfZQskGZABDB2HGdARrDI8DQ5C2EDgBkv-SJ5f3bad5VTTbMnW1M7NZg6dW3tvNFDaqyNEtLOpsE1n8anrWq7XvnB6cbE9zZVu1HFLWbi92AqHxvCeXJiVRPMxUGXydv93evqkaxfHp5Wt2uic1EOhOUUqbZ1rqlgeZFry3hFK82V1rzgmmJWMFuUpSgp6AoMCqy5ZUYIKGos8mVC5t7wZfqxkr13W-X3slNOhmaslJ9EBiMFx5xF_9Xs7323G00Y5KYbfRtPlBkChZIDn1w4uyKaELyxv70IcsItZ9wy4pYTbvkdM9nhkuhtP4z_a_4_9APTdISi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104078085</pqid></control><display><type>article</type><title>Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates</title><source>Springer Nature</source><creator>Zhai, Yujia ; Brun, Nadja R. ; Bundschuh, Mirco ; Schrama, Maarten ; Hin, Eline ; Vijver, Martina G. ; Hunting, Ellard R.</creator><creatorcontrib>Zhai, Yujia ; Brun, Nadja R. ; Bundschuh, Mirco ; Schrama, Maarten ; Hin, Eline ; Vijver, Martina G. ; Hunting, Ellard R. ; Sveriges lantbruksuniversitet</creatorcontrib><description>Complex natural systems are affected by multiple anthropogenic stressors, and therefore indirect effects within food webs are increasingly investigated. In this context, dead organic matter (OM) or detritus provides a food source sustaining detrital food webs that recycle the retained energy through microbial decomposition and invertebrate consumption. In aquatic environments, poorly water-soluble contaminants, including nanoparticles (NPs), quickly adsorb onto OM potentially modifying OM-associated microbial communities. Since invertebrates often depend on microbial conditioning to enhance OM quality, adverse effects on OM-associated microbial communities could potentially affect invertebrate performances. Therefore, this study assessed the effect of environmentally relevant concentrations of the model emerging contaminant, silver nanoparticles (AgNPs), on OM-associated microorganisms and subsequent indirect effects on growth of the invertebrate Asellus aquaticus . At low concentrations (0.8 ug/L), AgNPs inhibited activity and altered metabolic diversity of the OM-associated microbial community. This was observed to coincide with a negative effect on the growth of A. aquaticus due to antimicrobial properties, as a decreased growth was observed when offered AgNP-contaminated OM. When A. aquaticus were offered sterile OM in the absence of AgNPs, invertebrate growth was observed to be strongly retarded, illustrating the importance of microorganisms in the diet of this aquatic invertebrate. This outcome thus hints that environmentally relevant concentrations of AgNPs can indirectly affect the growth of aquatic invertebrates by affecting OM-associated microbial communities, and hence that microorganisms are an essential link in understanding bottom-up directed effects of chemical stressors in food webs.</description><identifier>ISSN: 1015-1621</identifier><identifier>ISSN: 1420-9055</identifier><identifier>EISSN: 1420-9055</identifier><identifier>DOI: 10.1007/s00027-018-0594-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Anthropogenic factors ; Aquatic environment ; Aquatic invertebrates ; Aquatic microorganisms ; Aquatic organisms ; Biomedical and Life Sciences ; Communities ; Contaminants ; Detritus ; Ecology ; Environmental effects ; Food chains ; Food sources ; Food webs ; Freshwater &amp; Marine Ecology ; Freshwater crustaceans ; Growth ; Invertebrates ; Life Sciences ; Low concentrations ; Marine &amp; Freshwater Sciences ; Microbial activity ; Microorganisms ; Nanoparticles ; Oceanografi, hydrologi, vattenresurser ; Oceanography ; Oceanography, Hydrology, Water Resources ; Organic chemistry ; Organic matter ; Research Article ; Silver ; Water pollution</subject><ispartof>Aquatic sciences, 2018-10, Vol.80 (4), p.1-7, Article 44</ispartof><rights>The Author(s) 2018</rights><rights>Aquatic Sciences is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-53414cfd3c495363cf58b4bc8acc868c41265f6779740cb0e191d8f5e9906d163</citedby><cites>FETCH-LOGICAL-c397t-53414cfd3c495363cf58b4bc8acc868c41265f6779740cb0e191d8f5e9906d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00027-018-0594-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00027-018-0594-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/98135$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Yujia</creatorcontrib><creatorcontrib>Brun, Nadja R.</creatorcontrib><creatorcontrib>Bundschuh, Mirco</creatorcontrib><creatorcontrib>Schrama, Maarten</creatorcontrib><creatorcontrib>Hin, Eline</creatorcontrib><creatorcontrib>Vijver, Martina G.</creatorcontrib><creatorcontrib>Hunting, Ellard R.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates</title><title>Aquatic sciences</title><addtitle>Aquat Sci</addtitle><description>Complex natural systems are affected by multiple anthropogenic stressors, and therefore indirect effects within food webs are increasingly investigated. In this context, dead organic matter (OM) or detritus provides a food source sustaining detrital food webs that recycle the retained energy through microbial decomposition and invertebrate consumption. In aquatic environments, poorly water-soluble contaminants, including nanoparticles (NPs), quickly adsorb onto OM potentially modifying OM-associated microbial communities. Since invertebrates often depend on microbial conditioning to enhance OM quality, adverse effects on OM-associated microbial communities could potentially affect invertebrate performances. Therefore, this study assessed the effect of environmentally relevant concentrations of the model emerging contaminant, silver nanoparticles (AgNPs), on OM-associated microorganisms and subsequent indirect effects on growth of the invertebrate Asellus aquaticus . At low concentrations (0.8 ug/L), AgNPs inhibited activity and altered metabolic diversity of the OM-associated microbial community. This was observed to coincide with a negative effect on the growth of A. aquaticus due to antimicrobial properties, as a decreased growth was observed when offered AgNP-contaminated OM. When A. aquaticus were offered sterile OM in the absence of AgNPs, invertebrate growth was observed to be strongly retarded, illustrating the importance of microorganisms in the diet of this aquatic invertebrate. This outcome thus hints that environmentally relevant concentrations of AgNPs can indirectly affect the growth of aquatic invertebrates by affecting OM-associated microbial communities, and hence that microorganisms are an essential link in understanding bottom-up directed effects of chemical stressors in food webs.</description><subject>Anthropogenic factors</subject><subject>Aquatic environment</subject><subject>Aquatic invertebrates</subject><subject>Aquatic microorganisms</subject><subject>Aquatic organisms</subject><subject>Biomedical and Life Sciences</subject><subject>Communities</subject><subject>Contaminants</subject><subject>Detritus</subject><subject>Ecology</subject><subject>Environmental effects</subject><subject>Food chains</subject><subject>Food sources</subject><subject>Food webs</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Freshwater crustaceans</subject><subject>Growth</subject><subject>Invertebrates</subject><subject>Life Sciences</subject><subject>Low concentrations</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Nanoparticles</subject><subject>Oceanografi, hydrologi, vattenresurser</subject><subject>Oceanography</subject><subject>Oceanography, Hydrology, Water Resources</subject><subject>Organic chemistry</subject><subject>Organic matter</subject><subject>Research Article</subject><subject>Silver</subject><subject>Water pollution</subject><issn>1015-1621</issn><issn>1420-9055</issn><issn>1420-9055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYsouK5-AG8Fz9GZNmmToyz-gxUv6jWkaSJZum03aZX105vSRU-e3kzy3mP4JcklwjUClDcBALKSAHICTFDyfZQskGZABDB2HGdARrDI8DQ5C2EDgBkv-SJ5f3bad5VTTbMnW1M7NZg6dW3tvNFDaqyNEtLOpsE1n8anrWq7XvnB6cbE9zZVu1HFLWbi92AqHxvCeXJiVRPMxUGXydv93evqkaxfHp5Wt2uic1EOhOUUqbZ1rqlgeZFry3hFK82V1rzgmmJWMFuUpSgp6AoMCqy5ZUYIKGos8mVC5t7wZfqxkr13W-X3slNOhmaslJ9EBiMFx5xF_9Xs7323G00Y5KYbfRtPlBkChZIDn1w4uyKaELyxv70IcsItZ9wy4pYTbvkdM9nhkuhtP4z_a_4_9APTdISi</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Zhai, Yujia</creator><creator>Brun, Nadja R.</creator><creator>Bundschuh, Mirco</creator><creator>Schrama, Maarten</creator><creator>Hin, Eline</creator><creator>Vijver, Martina G.</creator><creator>Hunting, Ellard R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7SN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>M7N</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20181001</creationdate><title>Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates</title><author>Zhai, Yujia ; Brun, Nadja R. ; Bundschuh, Mirco ; Schrama, Maarten ; Hin, Eline ; Vijver, Martina G. ; Hunting, Ellard R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-53414cfd3c495363cf58b4bc8acc868c41265f6779740cb0e191d8f5e9906d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anthropogenic factors</topic><topic>Aquatic environment</topic><topic>Aquatic invertebrates</topic><topic>Aquatic microorganisms</topic><topic>Aquatic organisms</topic><topic>Biomedical and Life Sciences</topic><topic>Communities</topic><topic>Contaminants</topic><topic>Detritus</topic><topic>Ecology</topic><topic>Environmental effects</topic><topic>Food chains</topic><topic>Food sources</topic><topic>Food webs</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Freshwater crustaceans</topic><topic>Growth</topic><topic>Invertebrates</topic><topic>Life Sciences</topic><topic>Low concentrations</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Nanoparticles</topic><topic>Oceanografi, hydrologi, vattenresurser</topic><topic>Oceanography</topic><topic>Oceanography, Hydrology, Water Resources</topic><topic>Organic chemistry</topic><topic>Organic matter</topic><topic>Research Article</topic><topic>Silver</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Yujia</creatorcontrib><creatorcontrib>Brun, Nadja R.</creatorcontrib><creatorcontrib>Bundschuh, Mirco</creatorcontrib><creatorcontrib>Schrama, Maarten</creatorcontrib><creatorcontrib>Hin, Eline</creatorcontrib><creatorcontrib>Vijver, Martina G.</creatorcontrib><creatorcontrib>Hunting, Ellard R.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Aquatic sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Yujia</au><au>Brun, Nadja R.</au><au>Bundschuh, Mirco</au><au>Schrama, Maarten</au><au>Hin, Eline</au><au>Vijver, Martina G.</au><au>Hunting, Ellard R.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates</atitle><jtitle>Aquatic sciences</jtitle><stitle>Aquat Sci</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>80</volume><issue>4</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>44</artnum><issn>1015-1621</issn><issn>1420-9055</issn><eissn>1420-9055</eissn><abstract>Complex natural systems are affected by multiple anthropogenic stressors, and therefore indirect effects within food webs are increasingly investigated. In this context, dead organic matter (OM) or detritus provides a food source sustaining detrital food webs that recycle the retained energy through microbial decomposition and invertebrate consumption. In aquatic environments, poorly water-soluble contaminants, including nanoparticles (NPs), quickly adsorb onto OM potentially modifying OM-associated microbial communities. Since invertebrates often depend on microbial conditioning to enhance OM quality, adverse effects on OM-associated microbial communities could potentially affect invertebrate performances. Therefore, this study assessed the effect of environmentally relevant concentrations of the model emerging contaminant, silver nanoparticles (AgNPs), on OM-associated microorganisms and subsequent indirect effects on growth of the invertebrate Asellus aquaticus . At low concentrations (0.8 ug/L), AgNPs inhibited activity and altered metabolic diversity of the OM-associated microbial community. This was observed to coincide with a negative effect on the growth of A. aquaticus due to antimicrobial properties, as a decreased growth was observed when offered AgNP-contaminated OM. When A. aquaticus were offered sterile OM in the absence of AgNPs, invertebrate growth was observed to be strongly retarded, illustrating the importance of microorganisms in the diet of this aquatic invertebrate. This outcome thus hints that environmentally relevant concentrations of AgNPs can indirectly affect the growth of aquatic invertebrates by affecting OM-associated microbial communities, and hence that microorganisms are an essential link in understanding bottom-up directed effects of chemical stressors in food webs.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00027-018-0594-z</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-1621
ispartof Aquatic sciences, 2018-10, Vol.80 (4), p.1-7, Article 44
issn 1015-1621
1420-9055
1420-9055
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_98135
source Springer Nature
subjects Anthropogenic factors
Aquatic environment
Aquatic invertebrates
Aquatic microorganisms
Aquatic organisms
Biomedical and Life Sciences
Communities
Contaminants
Detritus
Ecology
Environmental effects
Food chains
Food sources
Food webs
Freshwater & Marine Ecology
Freshwater crustaceans
Growth
Invertebrates
Life Sciences
Low concentrations
Marine & Freshwater Sciences
Microbial activity
Microorganisms
Nanoparticles
Oceanografi, hydrologi, vattenresurser
Oceanography
Oceanography, Hydrology, Water Resources
Organic chemistry
Organic matter
Research Article
Silver
Water pollution
title Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbially-mediated%20indirect%20effects%20of%20silver%20nanoparticles%20on%20aquatic%20invertebrates&rft.jtitle=Aquatic%20sciences&rft.au=Zhai,%20Yujia&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2018-10-01&rft.volume=80&rft.issue=4&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=44&rft.issn=1015-1621&rft.eissn=1420-9055&rft_id=info:doi/10.1007/s00027-018-0594-z&rft_dat=%3Cproquest_swepu%3E2104078085%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104078085&rft_id=info:pmid/&rfr_iscdi=true