Crop Upgrading Strategies and Modelling for Rainfed Cereals in a Semi-Arid Climate—A Review
Spatiotemporal rainfall variability and low soil fertility are the primary crop production challenges facing poor farmers in semi-arid environments. However, there are few solutions for addressing these challenges. The literature provides several crop upgrading strategies (UPS) for improving crop yi...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2018-04, Vol.10 (4), p.356 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spatiotemporal rainfall variability and low soil fertility are the primary crop production challenges facing poor farmers in semi-arid environments. However, there are few solutions for addressing these challenges. The literature provides several crop upgrading strategies (UPS) for improving crop yields, and biophysical models are used to simulate these strategies. However, the suitability of UPS is limited by systemization of their areas of application and the need to cope with the challenges faced by poor farmers. In this study, we reviewed 187 papers from peer-reviewed journals, conferences and reports that discuss UPS suitable for cereals and biophysical models used to assist in the selection of UPS in semi-arid areas. We found that four UPS were the most suitable, namely tied ridges, microdose fertilization, varying sowing dates, and field scattering. The DSSAT, APSIM and AquaCrop models adequately simulate these UPS. This work provides a systemization of crop UPS and models in semi-arid areas that can be applied by scientists and planners. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w10040356 |