Spatial analysis increases efficiency of progeny testing of Chinese fir

We used spatial, global trend and post-blocking analysis to examine the effectiveness of a progeny trial in a tree breeding program for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) on a hilly site with an environmental gradient from hill top to bottom. Diameter at breast height (DBH) and tree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forestry research 2017-05, Vol.28 (3), p.445-452
Hauptverfasser: Bian, Liming, Zheng, Renhua, Su, Shunde, Lin, Huazhong, Xiao, Hui, Wu, Harry Xiaming, Shi, Jisen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 452
container_issue 3
container_start_page 445
container_title Journal of forestry research
container_volume 28
creator Bian, Liming
Zheng, Renhua
Su, Shunde
Lin, Huazhong
Xiao, Hui
Wu, Harry Xiaming
Shi, Jisen
description We used spatial, global trend and post-blocking analysis to examine the effectiveness of a progeny trial in a tree breeding program for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) on a hilly site with an environmental gradient from hill top to bottom. Diameter at breast height (DBH) and tree height data had significant spatial auto-correlations among rows and columns. Adding a firstorder separable autoregressive term more effectively modelled the spatial variation than did the incomplete block (IB) model used for the experimental design. The spatial model also accounted for effects of experimental design factors and greatly reduced residual variances. The spatial analysis rel- ative to the IB analysis improved estimation of genetic parameters with the residual variance reduced 13 and 19% for DBH and tree height, respectively; heritability increased 35 and 51% for DBH and tree height, respectively; and genetic gain improved 3-5%. Fitting global trend and postblocking did not improve the analyses under IB model. The use of a spatial model or combined with a design model is recommended for forest genetic trials, particularly with global trend and local spatial variation of hilly sites.
doi_str_mv 10.1007/s11676-016-0341-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_88759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A717800453</galeid><cqvip_id>672082429</cqvip_id><wanfj_id>lyyj201703002</wanfj_id><sourcerecordid>lyyj201703002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-1d3e8be58d3a7ce6b05d93efd55fcc59be1feaa12c00946e11a27e4f6a8a56eb3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1poWnaH9CbaenR6UiyJPsYljYtBHJoC72JsTxytHjljeQlOL--WrwkKZQiBonhexo9vaJ4z-CCAejPiTGlVQUsl6hZ9fCiOGNtKypQoF_mc4Yqpfjv18WblLYAshaiPiuufuxx9jiWGHBckk-lDzYSJkolOeetp2CXcnLlPk4DhaWcKc0-DMfW5tYHSlQ6H98WrxyOid6d9vPi19cvPzffquubq--by-vKSs7mivWCmo5k0wvUllQHsm8FuV5KZ61sO2KOEBm3AG2tiDHkmmqnsEGpqBPnRbXem-5pf-jMPvodxsVM6E0aDx3G42YSmabRss38p5W_x-AwDGY7HWK2msy4LFsOTIMA4Jn7uHLZ5t0hW3wCWdPIOhdXT9SAIxkf3DRHtDufrLnUTDcAtRSZuvgHlVdPO2-nQM7n_l8CtgpsnFKK5B5tMTDH5Mwar8nxmmO85iFr-OkjMhsGis8e_B_Rh9Og2ykMd1n3OElpDg2veSv-ABDFs0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885488526</pqid></control><display><type>article</type><title>Spatial analysis increases efficiency of progeny testing of Chinese fir</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Bian, Liming ; Zheng, Renhua ; Su, Shunde ; Lin, Huazhong ; Xiao, Hui ; Wu, Harry Xiaming ; Shi, Jisen</creator><creatorcontrib>Bian, Liming ; Zheng, Renhua ; Su, Shunde ; Lin, Huazhong ; Xiao, Hui ; Wu, Harry Xiaming ; Shi, Jisen ; Sveriges lantbruksuniversitet</creatorcontrib><description>We used spatial, global trend and post-blocking analysis to examine the effectiveness of a progeny trial in a tree breeding program for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) on a hilly site with an environmental gradient from hill top to bottom. Diameter at breast height (DBH) and tree height data had significant spatial auto-correlations among rows and columns. Adding a firstorder separable autoregressive term more effectively modelled the spatial variation than did the incomplete block (IB) model used for the experimental design. The spatial model also accounted for effects of experimental design factors and greatly reduced residual variances. The spatial analysis rel- ative to the IB analysis improved estimation of genetic parameters with the residual variance reduced 13 and 19% for DBH and tree height, respectively; heritability increased 35 and 51% for DBH and tree height, respectively; and genetic gain improved 3-5%. Fitting global trend and postblocking did not improve the analyses under IB model. The use of a spatial model or combined with a design model is recommended for forest genetic trials, particularly with global trend and local spatial variation of hilly sites.</description><identifier>ISSN: 1007-662X</identifier><identifier>ISSN: 1993-0607</identifier><identifier>EISSN: 1993-0607</identifier><identifier>DOI: 10.1007/s11676-016-0341-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Autoregressive models ; Biomedical and Life Sciences ; Blocking ; Cunninghamia lanceolata ; Design factors ; Design of experiments ; Environmental gradient ; Evergreen trees ; Forest Science ; Forestry ; Forestry research ; Hills ; Life Sciences ; Original Paper ; Parameter estimation ; Plant breeding ; Progeny ; Skogsvetenskap ; Spatial analysis ; Spatial data ; Trees</subject><ispartof>Journal of forestry research, 2017-05, Vol.28 (3), p.445-452</ispartof><rights>The Author(s) 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-1d3e8be58d3a7ce6b05d93efd55fcc59be1feaa12c00946e11a27e4f6a8a56eb3</citedby><cites>FETCH-LOGICAL-c521t-1d3e8be58d3a7ce6b05d93efd55fcc59be1feaa12c00946e11a27e4f6a8a56eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85224X/85224X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11676-016-0341-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11676-016-0341-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/88759$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Bian, Liming</creatorcontrib><creatorcontrib>Zheng, Renhua</creatorcontrib><creatorcontrib>Su, Shunde</creatorcontrib><creatorcontrib>Lin, Huazhong</creatorcontrib><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Wu, Harry Xiaming</creatorcontrib><creatorcontrib>Shi, Jisen</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Spatial analysis increases efficiency of progeny testing of Chinese fir</title><title>Journal of forestry research</title><addtitle>J. For. Res</addtitle><addtitle>Journal of Forestry Research</addtitle><description>We used spatial, global trend and post-blocking analysis to examine the effectiveness of a progeny trial in a tree breeding program for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) on a hilly site with an environmental gradient from hill top to bottom. Diameter at breast height (DBH) and tree height data had significant spatial auto-correlations among rows and columns. Adding a firstorder separable autoregressive term more effectively modelled the spatial variation than did the incomplete block (IB) model used for the experimental design. The spatial model also accounted for effects of experimental design factors and greatly reduced residual variances. The spatial analysis rel- ative to the IB analysis improved estimation of genetic parameters with the residual variance reduced 13 and 19% for DBH and tree height, respectively; heritability increased 35 and 51% for DBH and tree height, respectively; and genetic gain improved 3-5%. Fitting global trend and postblocking did not improve the analyses under IB model. The use of a spatial model or combined with a design model is recommended for forest genetic trials, particularly with global trend and local spatial variation of hilly sites.</description><subject>Autoregressive models</subject><subject>Biomedical and Life Sciences</subject><subject>Blocking</subject><subject>Cunninghamia lanceolata</subject><subject>Design factors</subject><subject>Design of experiments</subject><subject>Environmental gradient</subject><subject>Evergreen trees</subject><subject>Forest Science</subject><subject>Forestry</subject><subject>Forestry research</subject><subject>Hills</subject><subject>Life Sciences</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Plant breeding</subject><subject>Progeny</subject><subject>Skogsvetenskap</subject><subject>Spatial analysis</subject><subject>Spatial data</subject><subject>Trees</subject><issn>1007-662X</issn><issn>1993-0607</issn><issn>1993-0607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUFr3DAQhU1poWnaH9CbaenR6UiyJPsYljYtBHJoC72JsTxytHjljeQlOL--WrwkKZQiBonhexo9vaJ4z-CCAejPiTGlVQUsl6hZ9fCiOGNtKypQoF_mc4Yqpfjv18WblLYAshaiPiuufuxx9jiWGHBckk-lDzYSJkolOeetp2CXcnLlPk4DhaWcKc0-DMfW5tYHSlQ6H98WrxyOid6d9vPi19cvPzffquubq--by-vKSs7mivWCmo5k0wvUllQHsm8FuV5KZ61sO2KOEBm3AG2tiDHkmmqnsEGpqBPnRbXem-5pf-jMPvodxsVM6E0aDx3G42YSmabRss38p5W_x-AwDGY7HWK2msy4LFsOTIMA4Jn7uHLZ5t0hW3wCWdPIOhdXT9SAIxkf3DRHtDufrLnUTDcAtRSZuvgHlVdPO2-nQM7n_l8CtgpsnFKK5B5tMTDH5Mwar8nxmmO85iFr-OkjMhsGis8e_B_Rh9Og2ykMd1n3OElpDg2veSv-ABDFs0Q</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Bian, Liming</creator><creator>Zheng, Renhua</creator><creator>Su, Shunde</creator><creator>Lin, Huazhong</creator><creator>Xiao, Hui</creator><creator>Wu, Harry Xiaming</creator><creator>Shi, Jisen</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>South China Forestry Multidisciplinary Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, People's Republic of China%Fujian Academy of Forestry, 35 Shangchiqiao, Fuzhou 350012, People's Republic of China%Jiangle Forest Farm, Jiangle 353300, People's Republic of China%Department of Forest Genetics and Plant Physiology, Ume(a) Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Ume(a), Sweden%College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, people's Republic of China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W95</scope><scope>~WA</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20170501</creationdate><title>Spatial analysis increases efficiency of progeny testing of Chinese fir</title><author>Bian, Liming ; Zheng, Renhua ; Su, Shunde ; Lin, Huazhong ; Xiao, Hui ; Wu, Harry Xiaming ; Shi, Jisen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-1d3e8be58d3a7ce6b05d93efd55fcc59be1feaa12c00946e11a27e4f6a8a56eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autoregressive models</topic><topic>Biomedical and Life Sciences</topic><topic>Blocking</topic><topic>Cunninghamia lanceolata</topic><topic>Design factors</topic><topic>Design of experiments</topic><topic>Environmental gradient</topic><topic>Evergreen trees</topic><topic>Forest Science</topic><topic>Forestry</topic><topic>Forestry research</topic><topic>Hills</topic><topic>Life Sciences</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Plant breeding</topic><topic>Progeny</topic><topic>Skogsvetenskap</topic><topic>Spatial analysis</topic><topic>Spatial data</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Liming</creatorcontrib><creatorcontrib>Zheng, Renhua</creatorcontrib><creatorcontrib>Su, Shunde</creatorcontrib><creatorcontrib>Lin, Huazhong</creatorcontrib><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Wu, Harry Xiaming</creatorcontrib><creatorcontrib>Shi, Jisen</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-农业科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Journal of forestry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Liming</au><au>Zheng, Renhua</au><au>Su, Shunde</au><au>Lin, Huazhong</au><au>Xiao, Hui</au><au>Wu, Harry Xiaming</au><au>Shi, Jisen</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial analysis increases efficiency of progeny testing of Chinese fir</atitle><jtitle>Journal of forestry research</jtitle><stitle>J. For. Res</stitle><addtitle>Journal of Forestry Research</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>28</volume><issue>3</issue><spage>445</spage><epage>452</epage><pages>445-452</pages><issn>1007-662X</issn><issn>1993-0607</issn><eissn>1993-0607</eissn><abstract>We used spatial, global trend and post-blocking analysis to examine the effectiveness of a progeny trial in a tree breeding program for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) on a hilly site with an environmental gradient from hill top to bottom. Diameter at breast height (DBH) and tree height data had significant spatial auto-correlations among rows and columns. Adding a firstorder separable autoregressive term more effectively modelled the spatial variation than did the incomplete block (IB) model used for the experimental design. The spatial model also accounted for effects of experimental design factors and greatly reduced residual variances. The spatial analysis rel- ative to the IB analysis improved estimation of genetic parameters with the residual variance reduced 13 and 19% for DBH and tree height, respectively; heritability increased 35 and 51% for DBH and tree height, respectively; and genetic gain improved 3-5%. Fitting global trend and postblocking did not improve the analyses under IB model. The use of a spatial model or combined with a design model is recommended for forest genetic trials, particularly with global trend and local spatial variation of hilly sites.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11676-016-0341-z</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1007-662X
ispartof Journal of forestry research, 2017-05, Vol.28 (3), p.445-452
issn 1007-662X
1993-0607
1993-0607
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_88759
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Autoregressive models
Biomedical and Life Sciences
Blocking
Cunninghamia lanceolata
Design factors
Design of experiments
Environmental gradient
Evergreen trees
Forest Science
Forestry
Forestry research
Hills
Life Sciences
Original Paper
Parameter estimation
Plant breeding
Progeny
Skogsvetenskap
Spatial analysis
Spatial data
Trees
title Spatial analysis increases efficiency of progeny testing of Chinese fir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20analysis%20increases%20efficiency%20of%20progeny%20testing%20of%20Chinese%20fir&rft.jtitle=Journal%20of%20forestry%20research&rft.au=Bian,%20Liming&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2017-05-01&rft.volume=28&rft.issue=3&rft.spage=445&rft.epage=452&rft.pages=445-452&rft.issn=1007-662X&rft.eissn=1993-0607&rft_id=info:doi/10.1007/s11676-016-0341-z&rft_dat=%3Cwanfang_jour_swepu%3Elyyj201703002%3C/wanfang_jour_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885488526&rft_id=info:pmid/&rft_galeid=A717800453&rft_cqvip_id=672082429&rft_wanfj_id=lyyj201703002&rfr_iscdi=true