Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms
Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on e...
Gespeichert in:
Veröffentlicht in: | Freshwater biology 2017-07, Vol.62 (7), p.1130-1142 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1142 |
---|---|
container_issue | 7 |
container_start_page | 1130 |
container_title | Freshwater biology |
container_volume | 62 |
creator | Audet, Joachim Neif, Érika M. Cao, Yu Hoffmann, Carl C. Lauridsen, Torben L. Larsen, Søren E. Søndergaard, Martin Jeppesen, Erik Davidson, Thomas A. |
description | Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on ecosystems processes, particularly greenhouse gas (GHG) emissions, is uncertain.
Using the world's longest‐running shallow lake experiment, we studied the effects of a simulated summer HW on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The experimental mesocosms had been exposed to different temperature treatments and nutrient loading for 11 years prior to the artificial HW.
In general, there was an increase in total GHG emissions during the 1‐month artificial HW, with a significant increase in CO2, CH4 and N2O being observed in the shallow lake mesocosms. No significant effect of the HW on CO2 emissions could be traced, though, in the mesocosms with high nutrient levels. Furthermore, the data suggested that in addition to the direct effect of increased temperature on metabolic processes during the HW, biotic interactions exerted a significant control of GHG emissions. For example, at low nutrient levels, increased CO2 emissions were associated with low macrophyte abundance, whereas at high nutrient levels, decreased phytoplankton abundance was linked to increased emissions of CO2 and CH4.
In contrast to the observable heat‐wave effect, no clear general effect of the long‐term temperature treatments could be discerned over the summer, likely because the potential effects of the moderate temperature increase, applied as a press disturbance, were overridden by biotic interactions. This study demonstrates that the role of biotic interactions needs to be considered within the context of global warming on ecosystem processes. |
doi_str_mv | 10.1111/fwb.12930 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_88651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906805251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3700-f25be022cf4e3aeb244a6c9b36842349deab4b7ab2e8f936b4de8cc84099573a3</originalsourceid><addsrcrecordid>eNp10L9OwzAQBnALgUQpDLyBJSaGtI7t_BuhohRRiQXEaNnpuU1J4uJriLrxCDwjT0LaIDZu-ZbfnU4fIZchG4XdjG1rRiHPBDsig1DEUcAlT47JgDEZBxFL2Ck5Q1wzxtIo4QPyOAO9_f78avUHULAW8i1SV9OlB6hXrkGgS40UqgKxcDVS611FcaXL0rW01G9AK0CXO6zwnJxYXSJc_OaQvEzvniezYP50_zC5mQe5SBgLLI8MMM5zK0FoMFxKHeeZEXEquZDZArSRJtGGQ2ozERu5gDTPU8myLEqEFkMS9HexhU1j1MYXlfY75XShsGyM9vtQCCpN4yjs_FXvN969N4BbtXaNr7sXVZixOGURP6jrXuXeIXqwf3dDpvbdqq5bdei2s-PetkUJu_-hmr7e9hs_j7B9Ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906805251</pqid></control><display><type>article</type><title>Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Audet, Joachim ; Neif, Érika M. ; Cao, Yu ; Hoffmann, Carl C. ; Lauridsen, Torben L. ; Larsen, Søren E. ; Søndergaard, Martin ; Jeppesen, Erik ; Davidson, Thomas A.</creator><creatorcontrib>Audet, Joachim ; Neif, Érika M. ; Cao, Yu ; Hoffmann, Carl C. ; Lauridsen, Torben L. ; Larsen, Søren E. ; Søndergaard, Martin ; Jeppesen, Erik ; Davidson, Thomas A. ; Sveriges lantbruksuniversitet</creatorcontrib><description>Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on ecosystems processes, particularly greenhouse gas (GHG) emissions, is uncertain.
Using the world's longest‐running shallow lake experiment, we studied the effects of a simulated summer HW on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The experimental mesocosms had been exposed to different temperature treatments and nutrient loading for 11 years prior to the artificial HW.
In general, there was an increase in total GHG emissions during the 1‐month artificial HW, with a significant increase in CO2, CH4 and N2O being observed in the shallow lake mesocosms. No significant effect of the HW on CO2 emissions could be traced, though, in the mesocosms with high nutrient levels. Furthermore, the data suggested that in addition to the direct effect of increased temperature on metabolic processes during the HW, biotic interactions exerted a significant control of GHG emissions. For example, at low nutrient levels, increased CO2 emissions were associated with low macrophyte abundance, whereas at high nutrient levels, decreased phytoplankton abundance was linked to increased emissions of CO2 and CH4.
In contrast to the observable heat‐wave effect, no clear general effect of the long‐term temperature treatments could be discerned over the summer, likely because the potential effects of the moderate temperature increase, applied as a press disturbance, were overridden by biotic interactions. This study demonstrates that the role of biotic interactions needs to be considered within the context of global warming on ecosystem processes.</description><identifier>ISSN: 0046-5070</identifier><identifier>ISSN: 1365-2427</identifier><identifier>EISSN: 1365-2427</identifier><identifier>DOI: 10.1111/fwb.12930</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Abundance ; Air pollution ; Aquatic plants ; Carbon cycle ; Carbon dioxide ; Carbon dioxide emissions ; Climate ; Climate change ; Climate Research ; Control ; Disturbance ; Ecosystem disturbance ; Ecosystems ; Emissions ; eutrophication ; Exposure ; Fluxes ; Global warming ; Greenhouse effect ; Greenhouse gases ; Heat ; Heat waves ; Heatwaves ; Interactions ; Klimatforskning ; Lakes ; Mesocosms ; Methane ; Mineral nutrients ; Nitrous oxide ; Nutrient loading ; Nutrients ; Phytoplankton ; Pollution load ; Running ; shallow lakes ; Simulation ; Summer ; Temperature ; Temperature effects ; trophic interactions ; Wave effects</subject><ispartof>Freshwater biology, 2017-07, Vol.62 (7), p.1130-1142</ispartof><rights>2017 John Wiley & Sons Ltd</rights><rights>Copyright © 2017 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3700-f25be022cf4e3aeb244a6c9b36842349deab4b7ab2e8f936b4de8cc84099573a3</citedby><cites>FETCH-LOGICAL-c3700-f25be022cf4e3aeb244a6c9b36842349deab4b7ab2e8f936b4de8cc84099573a3</cites><orcidid>0000-0001-5839-8793 ; 0000-0003-2326-1564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffwb.12930$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffwb.12930$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/88651$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Audet, Joachim</creatorcontrib><creatorcontrib>Neif, Érika M.</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Hoffmann, Carl C.</creatorcontrib><creatorcontrib>Lauridsen, Torben L.</creatorcontrib><creatorcontrib>Larsen, Søren E.</creatorcontrib><creatorcontrib>Søndergaard, Martin</creatorcontrib><creatorcontrib>Jeppesen, Erik</creatorcontrib><creatorcontrib>Davidson, Thomas A.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms</title><title>Freshwater biology</title><description>Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on ecosystems processes, particularly greenhouse gas (GHG) emissions, is uncertain.
Using the world's longest‐running shallow lake experiment, we studied the effects of a simulated summer HW on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The experimental mesocosms had been exposed to different temperature treatments and nutrient loading for 11 years prior to the artificial HW.
In general, there was an increase in total GHG emissions during the 1‐month artificial HW, with a significant increase in CO2, CH4 and N2O being observed in the shallow lake mesocosms. No significant effect of the HW on CO2 emissions could be traced, though, in the mesocosms with high nutrient levels. Furthermore, the data suggested that in addition to the direct effect of increased temperature on metabolic processes during the HW, biotic interactions exerted a significant control of GHG emissions. For example, at low nutrient levels, increased CO2 emissions were associated with low macrophyte abundance, whereas at high nutrient levels, decreased phytoplankton abundance was linked to increased emissions of CO2 and CH4.
In contrast to the observable heat‐wave effect, no clear general effect of the long‐term temperature treatments could be discerned over the summer, likely because the potential effects of the moderate temperature increase, applied as a press disturbance, were overridden by biotic interactions. This study demonstrates that the role of biotic interactions needs to be considered within the context of global warming on ecosystem processes.</description><subject>Abundance</subject><subject>Air pollution</subject><subject>Aquatic plants</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate Research</subject><subject>Control</subject><subject>Disturbance</subject><subject>Ecosystem disturbance</subject><subject>Ecosystems</subject><subject>Emissions</subject><subject>eutrophication</subject><subject>Exposure</subject><subject>Fluxes</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat</subject><subject>Heat waves</subject><subject>Heatwaves</subject><subject>Interactions</subject><subject>Klimatforskning</subject><subject>Lakes</subject><subject>Mesocosms</subject><subject>Methane</subject><subject>Mineral nutrients</subject><subject>Nitrous oxide</subject><subject>Nutrient loading</subject><subject>Nutrients</subject><subject>Phytoplankton</subject><subject>Pollution load</subject><subject>Running</subject><subject>shallow lakes</subject><subject>Simulation</subject><subject>Summer</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>trophic interactions</subject><subject>Wave effects</subject><issn>0046-5070</issn><issn>1365-2427</issn><issn>1365-2427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10L9OwzAQBnALgUQpDLyBJSaGtI7t_BuhohRRiQXEaNnpuU1J4uJriLrxCDwjT0LaIDZu-ZbfnU4fIZchG4XdjG1rRiHPBDsig1DEUcAlT47JgDEZBxFL2Ck5Q1wzxtIo4QPyOAO9_f78avUHULAW8i1SV9OlB6hXrkGgS40UqgKxcDVS611FcaXL0rW01G9AK0CXO6zwnJxYXSJc_OaQvEzvniezYP50_zC5mQe5SBgLLI8MMM5zK0FoMFxKHeeZEXEquZDZArSRJtGGQ2ozERu5gDTPU8myLEqEFkMS9HexhU1j1MYXlfY75XShsGyM9vtQCCpN4yjs_FXvN969N4BbtXaNr7sXVZixOGURP6jrXuXeIXqwf3dDpvbdqq5bdei2s-PetkUJu_-hmr7e9hs_j7B9Ag</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Audet, Joachim</creator><creator>Neif, Érika M.</creator><creator>Cao, Yu</creator><creator>Hoffmann, Carl C.</creator><creator>Lauridsen, Torben L.</creator><creator>Larsen, Søren E.</creator><creator>Søndergaard, Martin</creator><creator>Jeppesen, Erik</creator><creator>Davidson, Thomas A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-5839-8793</orcidid><orcidid>https://orcid.org/0000-0003-2326-1564</orcidid></search><sort><creationdate>201707</creationdate><title>Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms</title><author>Audet, Joachim ; Neif, Érika M. ; Cao, Yu ; Hoffmann, Carl C. ; Lauridsen, Torben L. ; Larsen, Søren E. ; Søndergaard, Martin ; Jeppesen, Erik ; Davidson, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3700-f25be022cf4e3aeb244a6c9b36842349deab4b7ab2e8f936b4de8cc84099573a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abundance</topic><topic>Air pollution</topic><topic>Aquatic plants</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate Research</topic><topic>Control</topic><topic>Disturbance</topic><topic>Ecosystem disturbance</topic><topic>Ecosystems</topic><topic>Emissions</topic><topic>eutrophication</topic><topic>Exposure</topic><topic>Fluxes</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat</topic><topic>Heat waves</topic><topic>Heatwaves</topic><topic>Interactions</topic><topic>Klimatforskning</topic><topic>Lakes</topic><topic>Mesocosms</topic><topic>Methane</topic><topic>Mineral nutrients</topic><topic>Nitrous oxide</topic><topic>Nutrient loading</topic><topic>Nutrients</topic><topic>Phytoplankton</topic><topic>Pollution load</topic><topic>Running</topic><topic>shallow lakes</topic><topic>Simulation</topic><topic>Summer</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>trophic interactions</topic><topic>Wave effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Audet, Joachim</creatorcontrib><creatorcontrib>Neif, Érika M.</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Hoffmann, Carl C.</creatorcontrib><creatorcontrib>Lauridsen, Torben L.</creatorcontrib><creatorcontrib>Larsen, Søren E.</creatorcontrib><creatorcontrib>Søndergaard, Martin</creatorcontrib><creatorcontrib>Jeppesen, Erik</creatorcontrib><creatorcontrib>Davidson, Thomas A.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Freshwater biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Audet, Joachim</au><au>Neif, Érika M.</au><au>Cao, Yu</au><au>Hoffmann, Carl C.</au><au>Lauridsen, Torben L.</au><au>Larsen, Søren E.</au><au>Søndergaard, Martin</au><au>Jeppesen, Erik</au><au>Davidson, Thomas A.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms</atitle><jtitle>Freshwater biology</jtitle><date>2017-07</date><risdate>2017</risdate><volume>62</volume><issue>7</issue><spage>1130</spage><epage>1142</epage><pages>1130-1142</pages><issn>0046-5070</issn><issn>1365-2427</issn><eissn>1365-2427</eissn><abstract>Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on ecosystems processes, particularly greenhouse gas (GHG) emissions, is uncertain.
Using the world's longest‐running shallow lake experiment, we studied the effects of a simulated summer HW on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The experimental mesocosms had been exposed to different temperature treatments and nutrient loading for 11 years prior to the artificial HW.
In general, there was an increase in total GHG emissions during the 1‐month artificial HW, with a significant increase in CO2, CH4 and N2O being observed in the shallow lake mesocosms. No significant effect of the HW on CO2 emissions could be traced, though, in the mesocosms with high nutrient levels. Furthermore, the data suggested that in addition to the direct effect of increased temperature on metabolic processes during the HW, biotic interactions exerted a significant control of GHG emissions. For example, at low nutrient levels, increased CO2 emissions were associated with low macrophyte abundance, whereas at high nutrient levels, decreased phytoplankton abundance was linked to increased emissions of CO2 and CH4.
In contrast to the observable heat‐wave effect, no clear general effect of the long‐term temperature treatments could be discerned over the summer, likely because the potential effects of the moderate temperature increase, applied as a press disturbance, were overridden by biotic interactions. This study demonstrates that the role of biotic interactions needs to be considered within the context of global warming on ecosystem processes.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/fwb.12930</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5839-8793</orcidid><orcidid>https://orcid.org/0000-0003-2326-1564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5070 |
ispartof | Freshwater biology, 2017-07, Vol.62 (7), p.1130-1142 |
issn | 0046-5070 1365-2427 1365-2427 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_88651 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Abundance Air pollution Aquatic plants Carbon cycle Carbon dioxide Carbon dioxide emissions Climate Climate change Climate Research Control Disturbance Ecosystem disturbance Ecosystems Emissions eutrophication Exposure Fluxes Global warming Greenhouse effect Greenhouse gases Heat Heat waves Heatwaves Interactions Klimatforskning Lakes Mesocosms Methane Mineral nutrients Nitrous oxide Nutrient loading Nutrients Phytoplankton Pollution load Running shallow lakes Simulation Summer Temperature Temperature effects trophic interactions Wave effects |
title | Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%E2%80%90wave%20effects%20on%20greenhouse%20gas%20emissions%20from%20shallow%20lake%20mesocosms&rft.jtitle=Freshwater%20biology&rft.au=Audet,%20Joachim&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2017-07&rft.volume=62&rft.issue=7&rft.spage=1130&rft.epage=1142&rft.pages=1130-1142&rft.issn=0046-5070&rft.eissn=1365-2427&rft_id=info:doi/10.1111/fwb.12930&rft_dat=%3Cproquest_swepu%3E1906805251%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906805251&rft_id=info:pmid/&rfr_iscdi=true |