Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms

Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Freshwater biology 2017-07, Vol.62 (7), p.1130-1142
Hauptverfasser: Audet, Joachim, Neif, Érika M., Cao, Yu, Hoffmann, Carl C., Lauridsen, Torben L., Larsen, Søren E., Søndergaard, Martin, Jeppesen, Erik, Davidson, Thomas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1142
container_issue 7
container_start_page 1130
container_title Freshwater biology
container_volume 62
creator Audet, Joachim
Neif, Érika M.
Cao, Yu
Hoffmann, Carl C.
Lauridsen, Torben L.
Larsen, Søren E.
Søndergaard, Martin
Jeppesen, Erik
Davidson, Thomas A.
description Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on ecosystems processes, particularly greenhouse gas (GHG) emissions, is uncertain. Using the world's longest‐running shallow lake experiment, we studied the effects of a simulated summer HW on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The experimental mesocosms had been exposed to different temperature treatments and nutrient loading for 11 years prior to the artificial HW. In general, there was an increase in total GHG emissions during the 1‐month artificial HW, with a significant increase in CO2, CH4 and N2O being observed in the shallow lake mesocosms. No significant effect of the HW on CO2 emissions could be traced, though, in the mesocosms with high nutrient levels. Furthermore, the data suggested that in addition to the direct effect of increased temperature on metabolic processes during the HW, biotic interactions exerted a significant control of GHG emissions. For example, at low nutrient levels, increased CO2 emissions were associated with low macrophyte abundance, whereas at high nutrient levels, decreased phytoplankton abundance was linked to increased emissions of CO2 and CH4. In contrast to the observable heat‐wave effect, no clear general effect of the long‐term temperature treatments could be discerned over the summer, likely because the potential effects of the moderate temperature increase, applied as a press disturbance, were overridden by biotic interactions. This study demonstrates that the role of biotic interactions needs to be considered within the context of global warming on ecosystem processes.
doi_str_mv 10.1111/fwb.12930
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_88651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906805251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3700-f25be022cf4e3aeb244a6c9b36842349deab4b7ab2e8f936b4de8cc84099573a3</originalsourceid><addsrcrecordid>eNp10L9OwzAQBnALgUQpDLyBJSaGtI7t_BuhohRRiQXEaNnpuU1J4uJriLrxCDwjT0LaIDZu-ZbfnU4fIZchG4XdjG1rRiHPBDsig1DEUcAlT47JgDEZBxFL2Ck5Q1wzxtIo4QPyOAO9_f78avUHULAW8i1SV9OlB6hXrkGgS40UqgKxcDVS611FcaXL0rW01G9AK0CXO6zwnJxYXSJc_OaQvEzvniezYP50_zC5mQe5SBgLLI8MMM5zK0FoMFxKHeeZEXEquZDZArSRJtGGQ2ozERu5gDTPU8myLEqEFkMS9HexhU1j1MYXlfY75XShsGyM9vtQCCpN4yjs_FXvN969N4BbtXaNr7sXVZixOGURP6jrXuXeIXqwf3dDpvbdqq5bdei2s-PetkUJu_-hmr7e9hs_j7B9Ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906805251</pqid></control><display><type>article</type><title>Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Audet, Joachim ; Neif, Érika M. ; Cao, Yu ; Hoffmann, Carl C. ; Lauridsen, Torben L. ; Larsen, Søren E. ; Søndergaard, Martin ; Jeppesen, Erik ; Davidson, Thomas A.</creator><creatorcontrib>Audet, Joachim ; Neif, Érika M. ; Cao, Yu ; Hoffmann, Carl C. ; Lauridsen, Torben L. ; Larsen, Søren E. ; Søndergaard, Martin ; Jeppesen, Erik ; Davidson, Thomas A. ; Sveriges lantbruksuniversitet</creatorcontrib><description>Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on ecosystems processes, particularly greenhouse gas (GHG) emissions, is uncertain. Using the world's longest‐running shallow lake experiment, we studied the effects of a simulated summer HW on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The experimental mesocosms had been exposed to different temperature treatments and nutrient loading for 11 years prior to the artificial HW. In general, there was an increase in total GHG emissions during the 1‐month artificial HW, with a significant increase in CO2, CH4 and N2O being observed in the shallow lake mesocosms. No significant effect of the HW on CO2 emissions could be traced, though, in the mesocosms with high nutrient levels. Furthermore, the data suggested that in addition to the direct effect of increased temperature on metabolic processes during the HW, biotic interactions exerted a significant control of GHG emissions. For example, at low nutrient levels, increased CO2 emissions were associated with low macrophyte abundance, whereas at high nutrient levels, decreased phytoplankton abundance was linked to increased emissions of CO2 and CH4. In contrast to the observable heat‐wave effect, no clear general effect of the long‐term temperature treatments could be discerned over the summer, likely because the potential effects of the moderate temperature increase, applied as a press disturbance, were overridden by biotic interactions. This study demonstrates that the role of biotic interactions needs to be considered within the context of global warming on ecosystem processes.</description><identifier>ISSN: 0046-5070</identifier><identifier>ISSN: 1365-2427</identifier><identifier>EISSN: 1365-2427</identifier><identifier>DOI: 10.1111/fwb.12930</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Abundance ; Air pollution ; Aquatic plants ; Carbon cycle ; Carbon dioxide ; Carbon dioxide emissions ; Climate ; Climate change ; Climate Research ; Control ; Disturbance ; Ecosystem disturbance ; Ecosystems ; Emissions ; eutrophication ; Exposure ; Fluxes ; Global warming ; Greenhouse effect ; Greenhouse gases ; Heat ; Heat waves ; Heatwaves ; Interactions ; Klimatforskning ; Lakes ; Mesocosms ; Methane ; Mineral nutrients ; Nitrous oxide ; Nutrient loading ; Nutrients ; Phytoplankton ; Pollution load ; Running ; shallow lakes ; Simulation ; Summer ; Temperature ; Temperature effects ; trophic interactions ; Wave effects</subject><ispartof>Freshwater biology, 2017-07, Vol.62 (7), p.1130-1142</ispartof><rights>2017 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2017 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3700-f25be022cf4e3aeb244a6c9b36842349deab4b7ab2e8f936b4de8cc84099573a3</citedby><cites>FETCH-LOGICAL-c3700-f25be022cf4e3aeb244a6c9b36842349deab4b7ab2e8f936b4de8cc84099573a3</cites><orcidid>0000-0001-5839-8793 ; 0000-0003-2326-1564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffwb.12930$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffwb.12930$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/88651$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Audet, Joachim</creatorcontrib><creatorcontrib>Neif, Érika M.</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Hoffmann, Carl C.</creatorcontrib><creatorcontrib>Lauridsen, Torben L.</creatorcontrib><creatorcontrib>Larsen, Søren E.</creatorcontrib><creatorcontrib>Søndergaard, Martin</creatorcontrib><creatorcontrib>Jeppesen, Erik</creatorcontrib><creatorcontrib>Davidson, Thomas A.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms</title><title>Freshwater biology</title><description>Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on ecosystems processes, particularly greenhouse gas (GHG) emissions, is uncertain. Using the world's longest‐running shallow lake experiment, we studied the effects of a simulated summer HW on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The experimental mesocosms had been exposed to different temperature treatments and nutrient loading for 11 years prior to the artificial HW. In general, there was an increase in total GHG emissions during the 1‐month artificial HW, with a significant increase in CO2, CH4 and N2O being observed in the shallow lake mesocosms. No significant effect of the HW on CO2 emissions could be traced, though, in the mesocosms with high nutrient levels. Furthermore, the data suggested that in addition to the direct effect of increased temperature on metabolic processes during the HW, biotic interactions exerted a significant control of GHG emissions. For example, at low nutrient levels, increased CO2 emissions were associated with low macrophyte abundance, whereas at high nutrient levels, decreased phytoplankton abundance was linked to increased emissions of CO2 and CH4. In contrast to the observable heat‐wave effect, no clear general effect of the long‐term temperature treatments could be discerned over the summer, likely because the potential effects of the moderate temperature increase, applied as a press disturbance, were overridden by biotic interactions. This study demonstrates that the role of biotic interactions needs to be considered within the context of global warming on ecosystem processes.</description><subject>Abundance</subject><subject>Air pollution</subject><subject>Aquatic plants</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate Research</subject><subject>Control</subject><subject>Disturbance</subject><subject>Ecosystem disturbance</subject><subject>Ecosystems</subject><subject>Emissions</subject><subject>eutrophication</subject><subject>Exposure</subject><subject>Fluxes</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat</subject><subject>Heat waves</subject><subject>Heatwaves</subject><subject>Interactions</subject><subject>Klimatforskning</subject><subject>Lakes</subject><subject>Mesocosms</subject><subject>Methane</subject><subject>Mineral nutrients</subject><subject>Nitrous oxide</subject><subject>Nutrient loading</subject><subject>Nutrients</subject><subject>Phytoplankton</subject><subject>Pollution load</subject><subject>Running</subject><subject>shallow lakes</subject><subject>Simulation</subject><subject>Summer</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>trophic interactions</subject><subject>Wave effects</subject><issn>0046-5070</issn><issn>1365-2427</issn><issn>1365-2427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10L9OwzAQBnALgUQpDLyBJSaGtI7t_BuhohRRiQXEaNnpuU1J4uJriLrxCDwjT0LaIDZu-ZbfnU4fIZchG4XdjG1rRiHPBDsig1DEUcAlT47JgDEZBxFL2Ck5Q1wzxtIo4QPyOAO9_f78avUHULAW8i1SV9OlB6hXrkGgS40UqgKxcDVS611FcaXL0rW01G9AK0CXO6zwnJxYXSJc_OaQvEzvniezYP50_zC5mQe5SBgLLI8MMM5zK0FoMFxKHeeZEXEquZDZArSRJtGGQ2ozERu5gDTPU8myLEqEFkMS9HexhU1j1MYXlfY75XShsGyM9vtQCCpN4yjs_FXvN969N4BbtXaNr7sXVZixOGURP6jrXuXeIXqwf3dDpvbdqq5bdei2s-PetkUJu_-hmr7e9hs_j7B9Ag</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Audet, Joachim</creator><creator>Neif, Érika M.</creator><creator>Cao, Yu</creator><creator>Hoffmann, Carl C.</creator><creator>Lauridsen, Torben L.</creator><creator>Larsen, Søren E.</creator><creator>Søndergaard, Martin</creator><creator>Jeppesen, Erik</creator><creator>Davidson, Thomas A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-5839-8793</orcidid><orcidid>https://orcid.org/0000-0003-2326-1564</orcidid></search><sort><creationdate>201707</creationdate><title>Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms</title><author>Audet, Joachim ; Neif, Érika M. ; Cao, Yu ; Hoffmann, Carl C. ; Lauridsen, Torben L. ; Larsen, Søren E. ; Søndergaard, Martin ; Jeppesen, Erik ; Davidson, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3700-f25be022cf4e3aeb244a6c9b36842349deab4b7ab2e8f936b4de8cc84099573a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abundance</topic><topic>Air pollution</topic><topic>Aquatic plants</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate Research</topic><topic>Control</topic><topic>Disturbance</topic><topic>Ecosystem disturbance</topic><topic>Ecosystems</topic><topic>Emissions</topic><topic>eutrophication</topic><topic>Exposure</topic><topic>Fluxes</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat</topic><topic>Heat waves</topic><topic>Heatwaves</topic><topic>Interactions</topic><topic>Klimatforskning</topic><topic>Lakes</topic><topic>Mesocosms</topic><topic>Methane</topic><topic>Mineral nutrients</topic><topic>Nitrous oxide</topic><topic>Nutrient loading</topic><topic>Nutrients</topic><topic>Phytoplankton</topic><topic>Pollution load</topic><topic>Running</topic><topic>shallow lakes</topic><topic>Simulation</topic><topic>Summer</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>trophic interactions</topic><topic>Wave effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Audet, Joachim</creatorcontrib><creatorcontrib>Neif, Érika M.</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Hoffmann, Carl C.</creatorcontrib><creatorcontrib>Lauridsen, Torben L.</creatorcontrib><creatorcontrib>Larsen, Søren E.</creatorcontrib><creatorcontrib>Søndergaard, Martin</creatorcontrib><creatorcontrib>Jeppesen, Erik</creatorcontrib><creatorcontrib>Davidson, Thomas A.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Freshwater biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Audet, Joachim</au><au>Neif, Érika M.</au><au>Cao, Yu</au><au>Hoffmann, Carl C.</au><au>Lauridsen, Torben L.</au><au>Larsen, Søren E.</au><au>Søndergaard, Martin</au><au>Jeppesen, Erik</au><au>Davidson, Thomas A.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms</atitle><jtitle>Freshwater biology</jtitle><date>2017-07</date><risdate>2017</risdate><volume>62</volume><issue>7</issue><spage>1130</spage><epage>1142</epage><pages>1130-1142</pages><issn>0046-5070</issn><issn>1365-2427</issn><eissn>1365-2427</eissn><abstract>Shallow lakes are a key component of the global carbon cycle. It is, therefore, important to know how shallow lake ecosystems will respond to the current climate change. Global warming affects not only average temperatures, but also the frequency of heat waves (HW). The impact of extreme events on ecosystems processes, particularly greenhouse gas (GHG) emissions, is uncertain. Using the world's longest‐running shallow lake experiment, we studied the effects of a simulated summer HW on the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The experimental mesocosms had been exposed to different temperature treatments and nutrient loading for 11 years prior to the artificial HW. In general, there was an increase in total GHG emissions during the 1‐month artificial HW, with a significant increase in CO2, CH4 and N2O being observed in the shallow lake mesocosms. No significant effect of the HW on CO2 emissions could be traced, though, in the mesocosms with high nutrient levels. Furthermore, the data suggested that in addition to the direct effect of increased temperature on metabolic processes during the HW, biotic interactions exerted a significant control of GHG emissions. For example, at low nutrient levels, increased CO2 emissions were associated with low macrophyte abundance, whereas at high nutrient levels, decreased phytoplankton abundance was linked to increased emissions of CO2 and CH4. In contrast to the observable heat‐wave effect, no clear general effect of the long‐term temperature treatments could be discerned over the summer, likely because the potential effects of the moderate temperature increase, applied as a press disturbance, were overridden by biotic interactions. This study demonstrates that the role of biotic interactions needs to be considered within the context of global warming on ecosystem processes.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/fwb.12930</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5839-8793</orcidid><orcidid>https://orcid.org/0000-0003-2326-1564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-5070
ispartof Freshwater biology, 2017-07, Vol.62 (7), p.1130-1142
issn 0046-5070
1365-2427
1365-2427
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_88651
source Wiley Online Library Journals Frontfile Complete
subjects Abundance
Air pollution
Aquatic plants
Carbon cycle
Carbon dioxide
Carbon dioxide emissions
Climate
Climate change
Climate Research
Control
Disturbance
Ecosystem disturbance
Ecosystems
Emissions
eutrophication
Exposure
Fluxes
Global warming
Greenhouse effect
Greenhouse gases
Heat
Heat waves
Heatwaves
Interactions
Klimatforskning
Lakes
Mesocosms
Methane
Mineral nutrients
Nitrous oxide
Nutrient loading
Nutrients
Phytoplankton
Pollution load
Running
shallow lakes
Simulation
Summer
Temperature
Temperature effects
trophic interactions
Wave effects
title Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%E2%80%90wave%20effects%20on%20greenhouse%20gas%20emissions%20from%20shallow%20lake%20mesocosms&rft.jtitle=Freshwater%20biology&rft.au=Audet,%20Joachim&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2017-07&rft.volume=62&rft.issue=7&rft.spage=1130&rft.epage=1142&rft.pages=1130-1142&rft.issn=0046-5070&rft.eissn=1365-2427&rft_id=info:doi/10.1111/fwb.12930&rft_dat=%3Cproquest_swepu%3E1906805251%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906805251&rft_id=info:pmid/&rfr_iscdi=true