Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland

Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in‐depth understanding of changes in soil organic carbon (SOC) after soil warming, long‐term responses of SOC stabilization mechanisms such as aggregation, organo‐mineral interactions and chemical rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2017-03, Vol.23 (3), p.1316-1327
Hauptverfasser: Poeplau, Christopher, Kätterer, Thomas, Leblans, Niki I. W., Sigurdsson, Bjarni D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1327
container_issue 3
container_start_page 1316
container_title Global change biology
container_volume 23
creator Poeplau, Christopher
Kätterer, Thomas
Leblans, Niki I. W.
Sigurdsson, Bjarni D.
description Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in‐depth understanding of changes in soil organic carbon (SOC) after soil warming, long‐term responses of SOC stabilization mechanisms such as aggregation, organo‐mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC‐rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0–10 cm soil layer) and 27 ± 54% (20–30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0–10 cm) and 74 ± 8% (20–30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0–10 cm) and 86 ± 13% (20–30 cm) SOC losses and the highest relative enrichment in 13C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0–10 cm and +1.3 ± 0.8‰ in 20–30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate‐binding mechanisms. There was no difference between the responses of SC‐rSOC (slow‐cycling) and rSOC (passive) to warming, and 13C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation.
doi_str_mv 10.1111/gcb.13491
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_81139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859716242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4591-68aaead2129aefc68bf356e137028104ab651ba91e9c280a60c65c6629522b113</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEoqVw4AWQJS5wSGs7sRMfYQUFqRIH4GyNvZOtqyRePEmX5cab45DSAxISluzx4dOnf_QXxXPBz0U-FzvvzkVVG_GgOBWVVqWsW_1w-au6FFxUJ8UTohvOeSW5flycyEYZoRpzWvz8jCOFKdyG6chixyiGnnlILo6sS-CnEEdiMG7ZdI0hMdqjD13wjCZwoQ8_YCHYgP4axkADsSky_D4lHHCVHSANYdyxMDJgNDtIWerZLgFRn8VPi0cd9ITP7uZZ8fX9uy-bD-XVp8uPmzdXpa9z2FK3AAhbKaQB7LxuXVcpjaJquGwFr8FpJRwYgcbLloPmXiuvtTRKSidEdVaUq5cOuJ-d3acwQDraCMFSv-RahiW0baZN5l-t_D7FbzPSZIdAHvucGeNMVrSNbOt8m_9AlWmElrXM6Mu_0Js4pzEvnindGpVfnanXK-VTJErY3acV3C6V21y5_V15Zl_cGWc34Pae_NNxBi5W4BB6PP7bZC83b1flL6PLtrk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868951866</pqid></control><display><type>article</type><title>Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Poeplau, Christopher ; Kätterer, Thomas ; Leblans, Niki I. W. ; Sigurdsson, Bjarni D.</creator><creatorcontrib>Poeplau, Christopher ; Kätterer, Thomas ; Leblans, Niki I. W. ; Sigurdsson, Bjarni D. ; Sveriges lantbruksuniversitet</creatorcontrib><description>Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in‐depth understanding of changes in soil organic carbon (SOC) after soil warming, long‐term responses of SOC stabilization mechanisms such as aggregation, organo‐mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC‐rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0–10 cm soil layer) and 27 ± 54% (20–30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0–10 cm) and 74 ± 8% (20–30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0–10 cm) and 86 ± 13% (20–30 cm) SOC losses and the highest relative enrichment in 13C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0–10 cm and +1.3 ± 0.8‰ in 20–30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate‐binding mechanisms. There was no difference between the responses of SC‐rSOC (slow‐cycling) and rSOC (passive) to warming, and 13C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.13491</identifier><identifier>PMID: 27591579</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Biogeochemistry ; Biophysics ; Carbon ; Climate change ; Ecology ; Ekologi ; Environmental Sciences ; global change ; Global Warming ; Grassland ; Grasslands ; Iceland ; Marine ; Markvetenskap ; Miljövetenskap ; Soil ; soil carbon fractionation ; soil organic matter ; Soil Science ; soil warming ; Soils ; temperature manipulation ; temperature sensitivity ; trophic fractionation ; δ13C</subject><ispartof>Global change biology, 2017-03, Vol.23 (3), p.1316-1327</ispartof><rights>2016 John Wiley &amp; Sons Ltd</rights><rights>2016 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4591-68aaead2129aefc68bf356e137028104ab651ba91e9c280a60c65c6629522b113</citedby><cites>FETCH-LOGICAL-c4591-68aaead2129aefc68bf356e137028104ab651ba91e9c280a60c65c6629522b113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.13491$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.13491$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27591579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/81139$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Poeplau, Christopher</creatorcontrib><creatorcontrib>Kätterer, Thomas</creatorcontrib><creatorcontrib>Leblans, Niki I. W.</creatorcontrib><creatorcontrib>Sigurdsson, Bjarni D.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in‐depth understanding of changes in soil organic carbon (SOC) after soil warming, long‐term responses of SOC stabilization mechanisms such as aggregation, organo‐mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC‐rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0–10 cm soil layer) and 27 ± 54% (20–30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0–10 cm) and 74 ± 8% (20–30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0–10 cm) and 86 ± 13% (20–30 cm) SOC losses and the highest relative enrichment in 13C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0–10 cm and +1.3 ± 0.8‰ in 20–30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate‐binding mechanisms. There was no difference between the responses of SC‐rSOC (slow‐cycling) and rSOC (passive) to warming, and 13C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation.</description><subject>Biogeochemistry</subject><subject>Biophysics</subject><subject>Carbon</subject><subject>Climate change</subject><subject>Ecology</subject><subject>Ekologi</subject><subject>Environmental Sciences</subject><subject>global change</subject><subject>Global Warming</subject><subject>Grassland</subject><subject>Grasslands</subject><subject>Iceland</subject><subject>Marine</subject><subject>Markvetenskap</subject><subject>Miljövetenskap</subject><subject>Soil</subject><subject>soil carbon fractionation</subject><subject>soil organic matter</subject><subject>Soil Science</subject><subject>soil warming</subject><subject>Soils</subject><subject>temperature manipulation</subject><subject>temperature sensitivity</subject><subject>trophic fractionation</subject><subject>δ13C</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhiMEoqVw4AWQJS5wSGs7sRMfYQUFqRIH4GyNvZOtqyRePEmX5cab45DSAxISluzx4dOnf_QXxXPBz0U-FzvvzkVVG_GgOBWVVqWsW_1w-au6FFxUJ8UTohvOeSW5flycyEYZoRpzWvz8jCOFKdyG6chixyiGnnlILo6sS-CnEEdiMG7ZdI0hMdqjD13wjCZwoQ8_YCHYgP4axkADsSky_D4lHHCVHSANYdyxMDJgNDtIWerZLgFRn8VPi0cd9ITP7uZZ8fX9uy-bD-XVp8uPmzdXpa9z2FK3AAhbKaQB7LxuXVcpjaJquGwFr8FpJRwYgcbLloPmXiuvtTRKSidEdVaUq5cOuJ-d3acwQDraCMFSv-RahiW0baZN5l-t_D7FbzPSZIdAHvucGeNMVrSNbOt8m_9AlWmElrXM6Mu_0Js4pzEvnindGpVfnanXK-VTJErY3acV3C6V21y5_V15Zl_cGWc34Pae_NNxBi5W4BB6PP7bZC83b1flL6PLtrk</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Poeplau, Christopher</creator><creator>Kätterer, Thomas</creator><creator>Leblans, Niki I. W.</creator><creator>Sigurdsson, Bjarni D.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>201703</creationdate><title>Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland</title><author>Poeplau, Christopher ; Kätterer, Thomas ; Leblans, Niki I. W. ; Sigurdsson, Bjarni D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4591-68aaead2129aefc68bf356e137028104ab651ba91e9c280a60c65c6629522b113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biogeochemistry</topic><topic>Biophysics</topic><topic>Carbon</topic><topic>Climate change</topic><topic>Ecology</topic><topic>Ekologi</topic><topic>Environmental Sciences</topic><topic>global change</topic><topic>Global Warming</topic><topic>Grassland</topic><topic>Grasslands</topic><topic>Iceland</topic><topic>Marine</topic><topic>Markvetenskap</topic><topic>Miljövetenskap</topic><topic>Soil</topic><topic>soil carbon fractionation</topic><topic>soil organic matter</topic><topic>Soil Science</topic><topic>soil warming</topic><topic>Soils</topic><topic>temperature manipulation</topic><topic>temperature sensitivity</topic><topic>trophic fractionation</topic><topic>δ13C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poeplau, Christopher</creatorcontrib><creatorcontrib>Kätterer, Thomas</creatorcontrib><creatorcontrib>Leblans, Niki I. W.</creatorcontrib><creatorcontrib>Sigurdsson, Bjarni D.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poeplau, Christopher</au><au>Kätterer, Thomas</au><au>Leblans, Niki I. W.</au><au>Sigurdsson, Bjarni D.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2017-03</date><risdate>2017</risdate><volume>23</volume><issue>3</issue><spage>1316</spage><epage>1327</epage><pages>1316-1327</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in‐depth understanding of changes in soil organic carbon (SOC) after soil warming, long‐term responses of SOC stabilization mechanisms such as aggregation, organo‐mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC‐rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0–10 cm soil layer) and 27 ± 54% (20–30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0–10 cm) and 74 ± 8% (20–30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0–10 cm) and 86 ± 13% (20–30 cm) SOC losses and the highest relative enrichment in 13C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0–10 cm and +1.3 ± 0.8‰ in 20–30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate‐binding mechanisms. There was no difference between the responses of SC‐rSOC (slow‐cycling) and rSOC (passive) to warming, and 13C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27591579</pmid><doi>10.1111/gcb.13491</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2017-03, Vol.23 (3), p.1316-1327
issn 1354-1013
1365-2486
1365-2486
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_81139
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biogeochemistry
Biophysics
Carbon
Climate change
Ecology
Ekologi
Environmental Sciences
global change
Global Warming
Grassland
Grasslands
Iceland
Marine
Markvetenskap
Miljövetenskap
Soil
soil carbon fractionation
soil organic matter
Soil Science
soil warming
Soils
temperature manipulation
temperature sensitivity
trophic fractionation
δ13C
title Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20soil%20carbon%20fractions%20and%20their%20specific%20stabilization%20mechanisms%20to%20extreme%20soil%20warming%20in%20a%20subarctic%20grassland&rft.jtitle=Global%20change%20biology&rft.au=Poeplau,%20Christopher&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2017-03&rft.volume=23&rft.issue=3&rft.spage=1316&rft.epage=1327&rft.pages=1316-1327&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.13491&rft_dat=%3Cproquest_swepu%3E1859716242%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868951866&rft_id=info:pmid/27591579&rfr_iscdi=true