Informing climate models with rapid chamber measurements of forest carbon uptake
Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2...
Gespeichert in:
Veröffentlicht in: | Global change biology 2017-05, Vol.23 (5), p.2130-2139 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2139 |
---|---|
container_issue | 5 |
container_start_page | 2130 |
container_title | Global change biology |
container_volume | 23 |
creator | Metcalfe, Daniel B. Ricciuto, Daniel Palmroth, Sari Campbell, Catherine Hurry, Vaughan Mao, Jiafu Keel, Sonja G. Linder, Sune Shi, Xiaoying Näsholm, Torgny Ohlsson, Klas E. A. Blackburn, M. Thornton, Peter E. Oren, Ram |
description | Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short‐term NEE response to fertilization in such an N‐limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long‐standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere–atmosphere CO2 exchange in a changing climate. |
doi_str_mv | 10.1111/gcb.13451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_81109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826742948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5251-5320896adccd35412274b216f6a4254c834c166fcd53f00c4340afe80a80ad613</originalsourceid><addsrcrecordid>eNp90k1v1DAQBmALgWi7cOAPIAsu5ZDW35scywKl0kpwAK6W7di7KUkc7Fir_ntmSekBqUSO7MPj8avRIPSKkgsK3-XO2QvKhaRP0CnlSlZM1Orp8SxFRQnlJ-gs51tCCGdEPUcnbC0aInhzir7ejCGmoRt32PXdYGaPh9j6PuNDN-9xMlPXYrc3g_UJD97kkvzgxznjGDDc9HnGziQbR1ym2fz0L9CzYPrsX97vK_T908dvm8_V9sv1zeZqWznJJK0kJKkbZVrnWkhJGUSyjKqgjGBSuJoLR5UKrpU8EOIEF8QEXxMDq1WUr1C11M0HPxWrpwTp052OptO5L9ak46az1zWlpAG_fdT3ZYLf6sUbKwKD_mgS1lILL9e6doHp4CBmKwm3hv_3-Q_djysd006XoWjKqaQK_JvFxzxDQNfN3u1dHEfvZjCi5lwAOl_QlOKvAq3VQ5ed73sz-liypjVTa8Ea0Cv09h96G0saoeOgakYkl-qo3i3KpZhz8uEhJyX6ODoaRkf_GR2wr-8rFjv49kH-nRUAlws4dL2_e7ySvt68X0r-Bgw0y5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882053568</pqid></control><display><type>article</type><title>Informing climate models with rapid chamber measurements of forest carbon uptake</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Metcalfe, Daniel B. ; Ricciuto, Daniel ; Palmroth, Sari ; Campbell, Catherine ; Hurry, Vaughan ; Mao, Jiafu ; Keel, Sonja G. ; Linder, Sune ; Shi, Xiaoying ; Näsholm, Torgny ; Ohlsson, Klas E. A. ; Blackburn, M. ; Thornton, Peter E. ; Oren, Ram</creator><creatorcontrib>Metcalfe, Daniel B. ; Ricciuto, Daniel ; Palmroth, Sari ; Campbell, Catherine ; Hurry, Vaughan ; Mao, Jiafu ; Keel, Sonja G. ; Linder, Sune ; Shi, Xiaoying ; Näsholm, Torgny ; Ohlsson, Klas E. A. ; Blackburn, M. ; Thornton, Peter E. ; Oren, Ram ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Sveriges lantbruksuniversitet</creatorcontrib><description>Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short‐term NEE response to fertilization in such an N‐limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long‐standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere–atmosphere CO2 exchange in a changing climate.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.13451</identifier><identifier>PMID: 27490439</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Atmosphere ; Biogeochemistry ; boreal forest ; Carbon ; Carbon Cycle ; Carbon Dioxide ; Climate ; Climate Change ; Earth and Related Environmental Sciences ; earth system model ; Ecosystem ; ENVIRONMENTAL SCIENCES ; Forest Science ; Forests ; Geovetenskap och miljövetenskap ; Miljövetenskap ; model-data integration ; Natural Sciences ; Naturvetenskap ; nutrient limitation ; photosynthetic downregulation ; Pinus sylvestris ; Pinussylvestris ; Skogsvetenskap</subject><ispartof>Global change biology, 2017-05, Vol.23 (5), p.2130-2139</ispartof><rights>2016 John Wiley & Sons Ltd</rights><rights>2016 John Wiley & Sons Ltd.</rights><rights>Copyright © 2017 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5251-5320896adccd35412274b216f6a4254c834c166fcd53f00c4340afe80a80ad613</citedby><cites>FETCH-LOGICAL-c5251-5320896adccd35412274b216f6a4254c834c166fcd53f00c4340afe80a80ad613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.13451$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.13451$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27490439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1348334$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-131516$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/ab4f2490-0f75-4e57-8cf2-fc412d503ba3$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/81109$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Metcalfe, Daniel B.</creatorcontrib><creatorcontrib>Ricciuto, Daniel</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Campbell, Catherine</creatorcontrib><creatorcontrib>Hurry, Vaughan</creatorcontrib><creatorcontrib>Mao, Jiafu</creatorcontrib><creatorcontrib>Keel, Sonja G.</creatorcontrib><creatorcontrib>Linder, Sune</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Näsholm, Torgny</creatorcontrib><creatorcontrib>Ohlsson, Klas E. A.</creatorcontrib><creatorcontrib>Blackburn, M.</creatorcontrib><creatorcontrib>Thornton, Peter E.</creatorcontrib><creatorcontrib>Oren, Ram</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Informing climate models with rapid chamber measurements of forest carbon uptake</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short‐term NEE response to fertilization in such an N‐limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long‐standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere–atmosphere CO2 exchange in a changing climate.</description><subject>Atmosphere</subject><subject>Biogeochemistry</subject><subject>boreal forest</subject><subject>Carbon</subject><subject>Carbon Cycle</subject><subject>Carbon Dioxide</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Earth and Related Environmental Sciences</subject><subject>earth system model</subject><subject>Ecosystem</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forest Science</subject><subject>Forests</subject><subject>Geovetenskap och miljövetenskap</subject><subject>Miljövetenskap</subject><subject>model-data integration</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>nutrient limitation</subject><subject>photosynthetic downregulation</subject><subject>Pinus sylvestris</subject><subject>Pinussylvestris</subject><subject>Skogsvetenskap</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90k1v1DAQBmALgWi7cOAPIAsu5ZDW35scywKl0kpwAK6W7di7KUkc7Fir_ntmSekBqUSO7MPj8avRIPSKkgsK3-XO2QvKhaRP0CnlSlZM1Orp8SxFRQnlJ-gs51tCCGdEPUcnbC0aInhzir7ejCGmoRt32PXdYGaPh9j6PuNDN-9xMlPXYrc3g_UJD97kkvzgxznjGDDc9HnGziQbR1ym2fz0L9CzYPrsX97vK_T908dvm8_V9sv1zeZqWznJJK0kJKkbZVrnWkhJGUSyjKqgjGBSuJoLR5UKrpU8EOIEF8QEXxMDq1WUr1C11M0HPxWrpwTp052OptO5L9ak46az1zWlpAG_fdT3ZYLf6sUbKwKD_mgS1lILL9e6doHp4CBmKwm3hv_3-Q_djysd006XoWjKqaQK_JvFxzxDQNfN3u1dHEfvZjCi5lwAOl_QlOKvAq3VQ5ed73sz-liypjVTa8Ea0Cv09h96G0saoeOgakYkl-qo3i3KpZhz8uEhJyX6ODoaRkf_GR2wr-8rFjv49kH-nRUAlws4dL2_e7ySvt68X0r-Bgw0y5Q</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Metcalfe, Daniel B.</creator><creator>Ricciuto, Daniel</creator><creator>Palmroth, Sari</creator><creator>Campbell, Catherine</creator><creator>Hurry, Vaughan</creator><creator>Mao, Jiafu</creator><creator>Keel, Sonja G.</creator><creator>Linder, Sune</creator><creator>Shi, Xiaoying</creator><creator>Näsholm, Torgny</creator><creator>Ohlsson, Klas E. A.</creator><creator>Blackburn, M.</creator><creator>Thornton, Peter E.</creator><creator>Oren, Ram</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><scope>D95</scope></search><sort><creationdate>201705</creationdate><title>Informing climate models with rapid chamber measurements of forest carbon uptake</title><author>Metcalfe, Daniel B. ; Ricciuto, Daniel ; Palmroth, Sari ; Campbell, Catherine ; Hurry, Vaughan ; Mao, Jiafu ; Keel, Sonja G. ; Linder, Sune ; Shi, Xiaoying ; Näsholm, Torgny ; Ohlsson, Klas E. A. ; Blackburn, M. ; Thornton, Peter E. ; Oren, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5251-5320896adccd35412274b216f6a4254c834c166fcd53f00c4340afe80a80ad613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atmosphere</topic><topic>Biogeochemistry</topic><topic>boreal forest</topic><topic>Carbon</topic><topic>Carbon Cycle</topic><topic>Carbon Dioxide</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Earth and Related Environmental Sciences</topic><topic>earth system model</topic><topic>Ecosystem</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forest Science</topic><topic>Forests</topic><topic>Geovetenskap och miljövetenskap</topic><topic>Miljövetenskap</topic><topic>model-data integration</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>nutrient limitation</topic><topic>photosynthetic downregulation</topic><topic>Pinus sylvestris</topic><topic>Pinussylvestris</topic><topic>Skogsvetenskap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metcalfe, Daniel B.</creatorcontrib><creatorcontrib>Ricciuto, Daniel</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Campbell, Catherine</creatorcontrib><creatorcontrib>Hurry, Vaughan</creatorcontrib><creatorcontrib>Mao, Jiafu</creatorcontrib><creatorcontrib>Keel, Sonja G.</creatorcontrib><creatorcontrib>Linder, Sune</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Näsholm, Torgny</creatorcontrib><creatorcontrib>Ohlsson, Klas E. A.</creatorcontrib><creatorcontrib>Blackburn, M.</creatorcontrib><creatorcontrib>Thornton, Peter E.</creatorcontrib><creatorcontrib>Oren, Ram</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Lunds universitet</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metcalfe, Daniel B.</au><au>Ricciuto, Daniel</au><au>Palmroth, Sari</au><au>Campbell, Catherine</au><au>Hurry, Vaughan</au><au>Mao, Jiafu</au><au>Keel, Sonja G.</au><au>Linder, Sune</au><au>Shi, Xiaoying</au><au>Näsholm, Torgny</au><au>Ohlsson, Klas E. A.</au><au>Blackburn, M.</au><au>Thornton, Peter E.</au><au>Oren, Ram</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Informing climate models with rapid chamber measurements of forest carbon uptake</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2017-05</date><risdate>2017</risdate><volume>23</volume><issue>5</issue><spage>2130</spage><epage>2139</epage><pages>2130-2139</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short‐term NEE response to fertilization in such an N‐limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long‐standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere–atmosphere CO2 exchange in a changing climate.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27490439</pmid><doi>10.1111/gcb.13451</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2017-05, Vol.23 (5), p.2130-2139 |
issn | 1354-1013 1365-2486 1365-2486 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_81109 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Atmosphere Biogeochemistry boreal forest Carbon Carbon Cycle Carbon Dioxide Climate Climate Change Earth and Related Environmental Sciences earth system model Ecosystem ENVIRONMENTAL SCIENCES Forest Science Forests Geovetenskap och miljövetenskap Miljövetenskap model-data integration Natural Sciences Naturvetenskap nutrient limitation photosynthetic downregulation Pinus sylvestris Pinussylvestris Skogsvetenskap |
title | Informing climate models with rapid chamber measurements of forest carbon uptake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Informing%20climate%20models%20with%20rapid%20chamber%20measurements%20of%20forest%20carbon%20uptake&rft.jtitle=Global%20change%20biology&rft.au=Metcalfe,%20Daniel%20B.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2017-05&rft.volume=23&rft.issue=5&rft.spage=2130&rft.epage=2139&rft.pages=2130-2139&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.13451&rft_dat=%3Cproquest_swepu%3E1826742948%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882053568&rft_id=info:pmid/27490439&rfr_iscdi=true |