Informing climate models with rapid chamber measurements of forest carbon uptake

Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2017-05, Vol.23 (5), p.2130-2139
Hauptverfasser: Metcalfe, Daniel B., Ricciuto, Daniel, Palmroth, Sari, Campbell, Catherine, Hurry, Vaughan, Mao, Jiafu, Keel, Sonja G., Linder, Sune, Shi, Xiaoying, Näsholm, Torgny, Ohlsson, Klas E. A., Blackburn, M., Thornton, Peter E., Oren, Ram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2139
container_issue 5
container_start_page 2130
container_title Global change biology
container_volume 23
creator Metcalfe, Daniel B.
Ricciuto, Daniel
Palmroth, Sari
Campbell, Catherine
Hurry, Vaughan
Mao, Jiafu
Keel, Sonja G.
Linder, Sune
Shi, Xiaoying
Näsholm, Torgny
Ohlsson, Klas E. A.
Blackburn, M.
Thornton, Peter E.
Oren, Ram
description Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short‐term NEE response to fertilization in such an N‐limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long‐standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere–atmosphere CO2 exchange in a changing climate.
doi_str_mv 10.1111/gcb.13451
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_81109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826742948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5251-5320896adccd35412274b216f6a4254c834c166fcd53f00c4340afe80a80ad613</originalsourceid><addsrcrecordid>eNp90k1v1DAQBmALgWi7cOAPIAsu5ZDW35scywKl0kpwAK6W7di7KUkc7Fir_ntmSekBqUSO7MPj8avRIPSKkgsK3-XO2QvKhaRP0CnlSlZM1Orp8SxFRQnlJ-gs51tCCGdEPUcnbC0aInhzir7ejCGmoRt32PXdYGaPh9j6PuNDN-9xMlPXYrc3g_UJD97kkvzgxznjGDDc9HnGziQbR1ym2fz0L9CzYPrsX97vK_T908dvm8_V9sv1zeZqWznJJK0kJKkbZVrnWkhJGUSyjKqgjGBSuJoLR5UKrpU8EOIEF8QEXxMDq1WUr1C11M0HPxWrpwTp052OptO5L9ak46az1zWlpAG_fdT3ZYLf6sUbKwKD_mgS1lILL9e6doHp4CBmKwm3hv_3-Q_djysd006XoWjKqaQK_JvFxzxDQNfN3u1dHEfvZjCi5lwAOl_QlOKvAq3VQ5ed73sz-liypjVTa8Ea0Cv09h96G0saoeOgakYkl-qo3i3KpZhz8uEhJyX6ODoaRkf_GR2wr-8rFjv49kH-nRUAlws4dL2_e7ySvt68X0r-Bgw0y5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882053568</pqid></control><display><type>article</type><title>Informing climate models with rapid chamber measurements of forest carbon uptake</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Metcalfe, Daniel B. ; Ricciuto, Daniel ; Palmroth, Sari ; Campbell, Catherine ; Hurry, Vaughan ; Mao, Jiafu ; Keel, Sonja G. ; Linder, Sune ; Shi, Xiaoying ; Näsholm, Torgny ; Ohlsson, Klas E. A. ; Blackburn, M. ; Thornton, Peter E. ; Oren, Ram</creator><creatorcontrib>Metcalfe, Daniel B. ; Ricciuto, Daniel ; Palmroth, Sari ; Campbell, Catherine ; Hurry, Vaughan ; Mao, Jiafu ; Keel, Sonja G. ; Linder, Sune ; Shi, Xiaoying ; Näsholm, Torgny ; Ohlsson, Klas E. A. ; Blackburn, M. ; Thornton, Peter E. ; Oren, Ram ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Sveriges lantbruksuniversitet</creatorcontrib><description>Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short‐term NEE response to fertilization in such an N‐limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long‐standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere–atmosphere CO2 exchange in a changing climate.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.13451</identifier><identifier>PMID: 27490439</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Atmosphere ; Biogeochemistry ; boreal forest ; Carbon ; Carbon Cycle ; Carbon Dioxide ; Climate ; Climate Change ; Earth and Related Environmental Sciences ; earth system model ; Ecosystem ; ENVIRONMENTAL SCIENCES ; Forest Science ; Forests ; Geovetenskap och miljövetenskap ; Miljövetenskap ; model-data integration ; Natural Sciences ; Naturvetenskap ; nutrient limitation ; photosynthetic downregulation ; Pinus sylvestris ; Pinussylvestris ; Skogsvetenskap</subject><ispartof>Global change biology, 2017-05, Vol.23 (5), p.2130-2139</ispartof><rights>2016 John Wiley &amp; Sons Ltd</rights><rights>2016 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5251-5320896adccd35412274b216f6a4254c834c166fcd53f00c4340afe80a80ad613</citedby><cites>FETCH-LOGICAL-c5251-5320896adccd35412274b216f6a4254c834c166fcd53f00c4340afe80a80ad613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.13451$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.13451$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27490439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1348334$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-131516$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/ab4f2490-0f75-4e57-8cf2-fc412d503ba3$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/81109$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Metcalfe, Daniel B.</creatorcontrib><creatorcontrib>Ricciuto, Daniel</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Campbell, Catherine</creatorcontrib><creatorcontrib>Hurry, Vaughan</creatorcontrib><creatorcontrib>Mao, Jiafu</creatorcontrib><creatorcontrib>Keel, Sonja G.</creatorcontrib><creatorcontrib>Linder, Sune</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Näsholm, Torgny</creatorcontrib><creatorcontrib>Ohlsson, Klas E. A.</creatorcontrib><creatorcontrib>Blackburn, M.</creatorcontrib><creatorcontrib>Thornton, Peter E.</creatorcontrib><creatorcontrib>Oren, Ram</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Informing climate models with rapid chamber measurements of forest carbon uptake</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short‐term NEE response to fertilization in such an N‐limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long‐standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere–atmosphere CO2 exchange in a changing climate.</description><subject>Atmosphere</subject><subject>Biogeochemistry</subject><subject>boreal forest</subject><subject>Carbon</subject><subject>Carbon Cycle</subject><subject>Carbon Dioxide</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Earth and Related Environmental Sciences</subject><subject>earth system model</subject><subject>Ecosystem</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forest Science</subject><subject>Forests</subject><subject>Geovetenskap och miljövetenskap</subject><subject>Miljövetenskap</subject><subject>model-data integration</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>nutrient limitation</subject><subject>photosynthetic downregulation</subject><subject>Pinus sylvestris</subject><subject>Pinussylvestris</subject><subject>Skogsvetenskap</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90k1v1DAQBmALgWi7cOAPIAsu5ZDW35scywKl0kpwAK6W7di7KUkc7Fir_ntmSekBqUSO7MPj8avRIPSKkgsK3-XO2QvKhaRP0CnlSlZM1Orp8SxFRQnlJ-gs51tCCGdEPUcnbC0aInhzir7ejCGmoRt32PXdYGaPh9j6PuNDN-9xMlPXYrc3g_UJD97kkvzgxznjGDDc9HnGziQbR1ym2fz0L9CzYPrsX97vK_T908dvm8_V9sv1zeZqWznJJK0kJKkbZVrnWkhJGUSyjKqgjGBSuJoLR5UKrpU8EOIEF8QEXxMDq1WUr1C11M0HPxWrpwTp052OptO5L9ak46az1zWlpAG_fdT3ZYLf6sUbKwKD_mgS1lILL9e6doHp4CBmKwm3hv_3-Q_djysd006XoWjKqaQK_JvFxzxDQNfN3u1dHEfvZjCi5lwAOl_QlOKvAq3VQ5ed73sz-liypjVTa8Ea0Cv09h96G0saoeOgakYkl-qo3i3KpZhz8uEhJyX6ODoaRkf_GR2wr-8rFjv49kH-nRUAlws4dL2_e7ySvt68X0r-Bgw0y5Q</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Metcalfe, Daniel B.</creator><creator>Ricciuto, Daniel</creator><creator>Palmroth, Sari</creator><creator>Campbell, Catherine</creator><creator>Hurry, Vaughan</creator><creator>Mao, Jiafu</creator><creator>Keel, Sonja G.</creator><creator>Linder, Sune</creator><creator>Shi, Xiaoying</creator><creator>Näsholm, Torgny</creator><creator>Ohlsson, Klas E. A.</creator><creator>Blackburn, M.</creator><creator>Thornton, Peter E.</creator><creator>Oren, Ram</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><scope>D95</scope></search><sort><creationdate>201705</creationdate><title>Informing climate models with rapid chamber measurements of forest carbon uptake</title><author>Metcalfe, Daniel B. ; Ricciuto, Daniel ; Palmroth, Sari ; Campbell, Catherine ; Hurry, Vaughan ; Mao, Jiafu ; Keel, Sonja G. ; Linder, Sune ; Shi, Xiaoying ; Näsholm, Torgny ; Ohlsson, Klas E. A. ; Blackburn, M. ; Thornton, Peter E. ; Oren, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5251-5320896adccd35412274b216f6a4254c834c166fcd53f00c4340afe80a80ad613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atmosphere</topic><topic>Biogeochemistry</topic><topic>boreal forest</topic><topic>Carbon</topic><topic>Carbon Cycle</topic><topic>Carbon Dioxide</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Earth and Related Environmental Sciences</topic><topic>earth system model</topic><topic>Ecosystem</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forest Science</topic><topic>Forests</topic><topic>Geovetenskap och miljövetenskap</topic><topic>Miljövetenskap</topic><topic>model-data integration</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>nutrient limitation</topic><topic>photosynthetic downregulation</topic><topic>Pinus sylvestris</topic><topic>Pinussylvestris</topic><topic>Skogsvetenskap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metcalfe, Daniel B.</creatorcontrib><creatorcontrib>Ricciuto, Daniel</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Campbell, Catherine</creatorcontrib><creatorcontrib>Hurry, Vaughan</creatorcontrib><creatorcontrib>Mao, Jiafu</creatorcontrib><creatorcontrib>Keel, Sonja G.</creatorcontrib><creatorcontrib>Linder, Sune</creatorcontrib><creatorcontrib>Shi, Xiaoying</creatorcontrib><creatorcontrib>Näsholm, Torgny</creatorcontrib><creatorcontrib>Ohlsson, Klas E. A.</creatorcontrib><creatorcontrib>Blackburn, M.</creatorcontrib><creatorcontrib>Thornton, Peter E.</creatorcontrib><creatorcontrib>Oren, Ram</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Lunds universitet</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metcalfe, Daniel B.</au><au>Ricciuto, Daniel</au><au>Palmroth, Sari</au><au>Campbell, Catherine</au><au>Hurry, Vaughan</au><au>Mao, Jiafu</au><au>Keel, Sonja G.</au><au>Linder, Sune</au><au>Shi, Xiaoying</au><au>Näsholm, Torgny</au><au>Ohlsson, Klas E. A.</au><au>Blackburn, M.</au><au>Thornton, Peter E.</au><au>Oren, Ram</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Informing climate models with rapid chamber measurements of forest carbon uptake</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2017-05</date><risdate>2017</risdate><volume>23</volume><issue>5</issue><spage>2130</spage><epage>2139</epage><pages>2130-2139</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short‐term NEE response to fertilization in such an N‐limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long‐standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere–atmosphere CO2 exchange in a changing climate.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27490439</pmid><doi>10.1111/gcb.13451</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2017-05, Vol.23 (5), p.2130-2139
issn 1354-1013
1365-2486
1365-2486
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_81109
source MEDLINE; Wiley Online Library All Journals
subjects Atmosphere
Biogeochemistry
boreal forest
Carbon
Carbon Cycle
Carbon Dioxide
Climate
Climate Change
Earth and Related Environmental Sciences
earth system model
Ecosystem
ENVIRONMENTAL SCIENCES
Forest Science
Forests
Geovetenskap och miljövetenskap
Miljövetenskap
model-data integration
Natural Sciences
Naturvetenskap
nutrient limitation
photosynthetic downregulation
Pinus sylvestris
Pinussylvestris
Skogsvetenskap
title Informing climate models with rapid chamber measurements of forest carbon uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Informing%20climate%20models%20with%20rapid%20chamber%20measurements%20of%20forest%20carbon%20uptake&rft.jtitle=Global%20change%20biology&rft.au=Metcalfe,%20Daniel%20B.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2017-05&rft.volume=23&rft.issue=5&rft.spage=2130&rft.epage=2139&rft.pages=2130-2139&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.13451&rft_dat=%3Cproquest_swepu%3E1826742948%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882053568&rft_id=info:pmid/27490439&rfr_iscdi=true