Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow
•Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2017-04, Vol.242, p.637-644 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 644 |
---|---|
container_issue | |
container_start_page | 637 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 242 |
creator | Schanzenbach, Christoph Ilver, Dag Blomgren, Jakob Jonasson, Christian Johansson, Christer Krozer, Anatol Ye, Lei Rustas, Bengt-Ove |
description | •Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust surface-bead attachment.•Mfp-1 enables use of a generic protocol for Layer-on-layer architecture.
We describe a sensing system that is able to measure pH in-vivo, in the rumen of a cow, in real time. The sensing principle is based on gravimetric transduction using a magnetoelastic ribbon functionalized by pH-sensitive nanobeads that is placed in the rumen where it is actuated and read-out wirelessly. We describe a generic procedure that enables one to deposit monolayers or multilayers of nano- and micro beads onto virtually any substrate. The topography of the resulting layers as well as interlayer coverages were characterised using optical microscopy and scanning profilometry. First we determined performance of the system in-vitro, in phosphate-buffered saline, in McDougall’s buffer and in a rumen fluid. Thereafter we also performed in-vivo measurements.
Using buffers we determined pH response in the liquids both at the fundamental frequency of the functionalised foils, and at the 1st overtone. We argue that observed frequency changes vs pH are mainly due to changes of trapped liquid when the bead layers shrink or expand as a response to changed pH. The data obtained from the pH response of magnetoelastic foils at different bead coverages was modelled by a simple two-parameter model that corroborates this assumption. |
doi_str_mv | 10.1016/j.snb.2016.11.089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_80296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400516318871</els_id><sourcerecordid>2086832206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-c7aac6f85735739c3cb9dfc96c5d3c178366ba16c53c7546a9d6706b798dddf03</originalsourceid><addsrcrecordid>eNp9Ul2L1DAULaLguPoDfAv4qK03TZsPfFp21RUG9EF9vaRJumaYSWrSzrD_3pSKbysk3A_OOdzcnKp6TaGhQPn7Q5PD0LQlbShtQKon1Y5KwWoGQjytdqDavu4A-ufVi5wPANAxDrsqfEtu0knPPgaigyXmV6nM7JLPWzOORJPsQvbhnuSHPLsTGWMiF5_c0eVMpjtycjovyZ1cmDPxgZz9Ob5bE03SUrqbiImXl9WzUR-ze_U3XlU_Pn38fnNX779-_nJzva9ND_1cG6G14aPsBStHGWYGZUejuOktM1RIxvmgaSmZEX3HtbJcAB-EktbaEdhVVW-6-eKmZcAp-ZNODxi1x3xcBp3WgNmhhFbxgt8_ij8uU7kDbvjRWgNqsOhAdNiNrUItQWCZTlthFbfSFrm3j8rd-p_XGNM9Jo-tYm1X0G829JTi78XlGQ9xSaHsB1uQXLK2hXVEuqFMijknN_5TpYCrB_CAxQO4egApxeKBwvmwcVzZ9dm78mrjXTDOls8zM9ro_8P-A2f1vC8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086832206</pqid></control><display><type>article</type><title>Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow</title><source>Elsevier ScienceDirect Journals</source><creator>Schanzenbach, Christoph ; Ilver, Dag ; Blomgren, Jakob ; Jonasson, Christian ; Johansson, Christer ; Krozer, Anatol ; Ye, Lei ; Rustas, Bengt-Ove</creator><creatorcontrib>Schanzenbach, Christoph ; Ilver, Dag ; Blomgren, Jakob ; Jonasson, Christian ; Johansson, Christer ; Krozer, Anatol ; Ye, Lei ; Rustas, Bengt-Ove ; Sveriges lantbruksuniversitet</creatorcontrib><description>•Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust surface-bead attachment.•Mfp-1 enables use of a generic protocol for Layer-on-layer architecture.
We describe a sensing system that is able to measure pH in-vivo, in the rumen of a cow, in real time. The sensing principle is based on gravimetric transduction using a magnetoelastic ribbon functionalized by pH-sensitive nanobeads that is placed in the rumen where it is actuated and read-out wirelessly. We describe a generic procedure that enables one to deposit monolayers or multilayers of nano- and micro beads onto virtually any substrate. The topography of the resulting layers as well as interlayer coverages were characterised using optical microscopy and scanning profilometry. First we determined performance of the system in-vitro, in phosphate-buffered saline, in McDougall’s buffer and in a rumen fluid. Thereafter we also performed in-vivo measurements.
Using buffers we determined pH response in the liquids both at the fundamental frequency of the functionalised foils, and at the 1st overtone. We argue that observed frequency changes vs pH are mainly due to changes of trapped liquid when the bead layers shrink or expand as a response to changed pH. The data obtained from the pH response of magnetoelastic foils at different bead coverages was modelled by a simple two-parameter model that corroborates this assumption.</description><identifier>ISSN: 0925-4005</identifier><identifier>ISSN: 1873-3077</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2016.11.089</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adhesion ; Animal and Dairy Science ; Annan kemi ; Beads ; Biochemistry and Molecular Biology ; Biokemi och molekylärbiologi ; Biologi ; Biological Sciences ; Buffers ; Chemical Sciences ; Deposition ; Detection ; Foils ; Gravimetry ; Husdjursvetenskap ; Interlayers ; Kemi ; Layer by layer deposition ; Magneto-elastic ; Magnetoelastic resonance ; Multilayers ; Mussel adhesive protein ; Mussel adhesive proteins ; Nanoparticle multilayers ; Nanoparticles ; Natural Sciences ; Naturvetenskap ; Optical microscopy ; Other Chemistry Topics ; pH sensitive polymer ; Ph sensitive polymers ; pH sensors ; Polymers ; Potentiometric sensors ; Resonant frequencies ; Rumen pH ; Substrates</subject><ispartof>Sensors and actuators. B, Chemical, 2017-04, Vol.242, p.637-644</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-c7aac6f85735739c3cb9dfc96c5d3c178366ba16c53c7546a9d6706b798dddf03</citedby><cites>FETCH-LOGICAL-c505t-c7aac6f85735739c3cb9dfc96c5d3c178366ba16c53c7546a9d6706b798dddf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2016.11.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-29324$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/fddc09bd-e074-4f29-a807-fc9ad7d96d8d$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/80296$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Schanzenbach, Christoph</creatorcontrib><creatorcontrib>Ilver, Dag</creatorcontrib><creatorcontrib>Blomgren, Jakob</creatorcontrib><creatorcontrib>Jonasson, Christian</creatorcontrib><creatorcontrib>Johansson, Christer</creatorcontrib><creatorcontrib>Krozer, Anatol</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Rustas, Bengt-Ove</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow</title><title>Sensors and actuators. B, Chemical</title><description>•Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust surface-bead attachment.•Mfp-1 enables use of a generic protocol for Layer-on-layer architecture.
We describe a sensing system that is able to measure pH in-vivo, in the rumen of a cow, in real time. The sensing principle is based on gravimetric transduction using a magnetoelastic ribbon functionalized by pH-sensitive nanobeads that is placed in the rumen where it is actuated and read-out wirelessly. We describe a generic procedure that enables one to deposit monolayers or multilayers of nano- and micro beads onto virtually any substrate. The topography of the resulting layers as well as interlayer coverages were characterised using optical microscopy and scanning profilometry. First we determined performance of the system in-vitro, in phosphate-buffered saline, in McDougall’s buffer and in a rumen fluid. Thereafter we also performed in-vivo measurements.
Using buffers we determined pH response in the liquids both at the fundamental frequency of the functionalised foils, and at the 1st overtone. We argue that observed frequency changes vs pH are mainly due to changes of trapped liquid when the bead layers shrink or expand as a response to changed pH. The data obtained from the pH response of magnetoelastic foils at different bead coverages was modelled by a simple two-parameter model that corroborates this assumption.</description><subject>Adhesion</subject><subject>Animal and Dairy Science</subject><subject>Annan kemi</subject><subject>Beads</subject><subject>Biochemistry and Molecular Biology</subject><subject>Biokemi och molekylärbiologi</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>Buffers</subject><subject>Chemical Sciences</subject><subject>Deposition</subject><subject>Detection</subject><subject>Foils</subject><subject>Gravimetry</subject><subject>Husdjursvetenskap</subject><subject>Interlayers</subject><subject>Kemi</subject><subject>Layer by layer deposition</subject><subject>Magneto-elastic</subject><subject>Magnetoelastic resonance</subject><subject>Multilayers</subject><subject>Mussel adhesive protein</subject><subject>Mussel adhesive proteins</subject><subject>Nanoparticle multilayers</subject><subject>Nanoparticles</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Optical microscopy</subject><subject>Other Chemistry Topics</subject><subject>pH sensitive polymer</subject><subject>Ph sensitive polymers</subject><subject>pH sensors</subject><subject>Polymers</subject><subject>Potentiometric sensors</subject><subject>Resonant frequencies</subject><subject>Rumen pH</subject><subject>Substrates</subject><issn>0925-4005</issn><issn>1873-3077</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9Ul2L1DAULaLguPoDfAv4qK03TZsPfFp21RUG9EF9vaRJumaYSWrSzrD_3pSKbysk3A_OOdzcnKp6TaGhQPn7Q5PD0LQlbShtQKon1Y5KwWoGQjytdqDavu4A-ufVi5wPANAxDrsqfEtu0knPPgaigyXmV6nM7JLPWzOORJPsQvbhnuSHPLsTGWMiF5_c0eVMpjtycjovyZ1cmDPxgZz9Ob5bE03SUrqbiImXl9WzUR-ze_U3XlU_Pn38fnNX779-_nJzva9ND_1cG6G14aPsBStHGWYGZUejuOktM1RIxvmgaSmZEX3HtbJcAB-EktbaEdhVVW-6-eKmZcAp-ZNODxi1x3xcBp3WgNmhhFbxgt8_ij8uU7kDbvjRWgNqsOhAdNiNrUItQWCZTlthFbfSFrm3j8rd-p_XGNM9Jo-tYm1X0G829JTi78XlGQ9xSaHsB1uQXLK2hXVEuqFMijknN_5TpYCrB_CAxQO4egApxeKBwvmwcVzZ9dm78mrjXTDOls8zM9ro_8P-A2f1vC8</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Schanzenbach, Christoph</creator><creator>Ilver, Dag</creator><creator>Blomgren, Jakob</creator><creator>Jonasson, Christian</creator><creator>Johansson, Christer</creator><creator>Krozer, Anatol</creator><creator>Ye, Lei</creator><creator>Rustas, Bengt-Ove</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>20170401</creationdate><title>Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow</title><author>Schanzenbach, Christoph ; Ilver, Dag ; Blomgren, Jakob ; Jonasson, Christian ; Johansson, Christer ; Krozer, Anatol ; Ye, Lei ; Rustas, Bengt-Ove</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-c7aac6f85735739c3cb9dfc96c5d3c178366ba16c53c7546a9d6706b798dddf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion</topic><topic>Animal and Dairy Science</topic><topic>Annan kemi</topic><topic>Beads</topic><topic>Biochemistry and Molecular Biology</topic><topic>Biokemi och molekylärbiologi</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>Buffers</topic><topic>Chemical Sciences</topic><topic>Deposition</topic><topic>Detection</topic><topic>Foils</topic><topic>Gravimetry</topic><topic>Husdjursvetenskap</topic><topic>Interlayers</topic><topic>Kemi</topic><topic>Layer by layer deposition</topic><topic>Magneto-elastic</topic><topic>Magnetoelastic resonance</topic><topic>Multilayers</topic><topic>Mussel adhesive protein</topic><topic>Mussel adhesive proteins</topic><topic>Nanoparticle multilayers</topic><topic>Nanoparticles</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Optical microscopy</topic><topic>Other Chemistry Topics</topic><topic>pH sensitive polymer</topic><topic>Ph sensitive polymers</topic><topic>pH sensors</topic><topic>Polymers</topic><topic>Potentiometric sensors</topic><topic>Resonant frequencies</topic><topic>Rumen pH</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schanzenbach, Christoph</creatorcontrib><creatorcontrib>Ilver, Dag</creatorcontrib><creatorcontrib>Blomgren, Jakob</creatorcontrib><creatorcontrib>Jonasson, Christian</creatorcontrib><creatorcontrib>Johansson, Christer</creatorcontrib><creatorcontrib>Krozer, Anatol</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Rustas, Bengt-Ove</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schanzenbach, Christoph</au><au>Ilver, Dag</au><au>Blomgren, Jakob</au><au>Jonasson, Christian</au><au>Johansson, Christer</au><au>Krozer, Anatol</au><au>Ye, Lei</au><au>Rustas, Bengt-Ove</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>242</volume><spage>637</spage><epage>644</epage><pages>637-644</pages><issn>0925-4005</issn><issn>1873-3077</issn><eissn>1873-3077</eissn><abstract>•Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust surface-bead attachment.•Mfp-1 enables use of a generic protocol for Layer-on-layer architecture.
We describe a sensing system that is able to measure pH in-vivo, in the rumen of a cow, in real time. The sensing principle is based on gravimetric transduction using a magnetoelastic ribbon functionalized by pH-sensitive nanobeads that is placed in the rumen where it is actuated and read-out wirelessly. We describe a generic procedure that enables one to deposit monolayers or multilayers of nano- and micro beads onto virtually any substrate. The topography of the resulting layers as well as interlayer coverages were characterised using optical microscopy and scanning profilometry. First we determined performance of the system in-vitro, in phosphate-buffered saline, in McDougall’s buffer and in a rumen fluid. Thereafter we also performed in-vivo measurements.
Using buffers we determined pH response in the liquids both at the fundamental frequency of the functionalised foils, and at the 1st overtone. We argue that observed frequency changes vs pH are mainly due to changes of trapped liquid when the bead layers shrink or expand as a response to changed pH. The data obtained from the pH response of magnetoelastic foils at different bead coverages was modelled by a simple two-parameter model that corroborates this assumption.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2016.11.089</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2017-04, Vol.242, p.637-644 |
issn | 0925-4005 1873-3077 1873-3077 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_80296 |
source | Elsevier ScienceDirect Journals |
subjects | Adhesion Animal and Dairy Science Annan kemi Beads Biochemistry and Molecular Biology Biokemi och molekylärbiologi Biologi Biological Sciences Buffers Chemical Sciences Deposition Detection Foils Gravimetry Husdjursvetenskap Interlayers Kemi Layer by layer deposition Magneto-elastic Magnetoelastic resonance Multilayers Mussel adhesive protein Mussel adhesive proteins Nanoparticle multilayers Nanoparticles Natural Sciences Naturvetenskap Optical microscopy Other Chemistry Topics pH sensitive polymer Ph sensitive polymers pH sensors Polymers Potentiometric sensors Resonant frequencies Rumen pH Substrates |
title | Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20characterisation%20of%20a%20sensing%20system%20for%20wireless%20pH%20measurements%20in%20vivo,%20in%20a%20rumen%20of%20a%20cow&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Schanzenbach,%20Christoph&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2017-04-01&rft.volume=242&rft.spage=637&rft.epage=644&rft.pages=637-644&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2016.11.089&rft_dat=%3Cproquest_swepu%3E2086832206%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086832206&rft_id=info:pmid/&rft_els_id=S0925400516318871&rfr_iscdi=true |