Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow

•Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2017-04, Vol.242, p.637-644
Hauptverfasser: Schanzenbach, Christoph, Ilver, Dag, Blomgren, Jakob, Jonasson, Christian, Johansson, Christer, Krozer, Anatol, Ye, Lei, Rustas, Bengt-Ove
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 644
container_issue
container_start_page 637
container_title Sensors and actuators. B, Chemical
container_volume 242
creator Schanzenbach, Christoph
Ilver, Dag
Blomgren, Jakob
Jonasson, Christian
Johansson, Christer
Krozer, Anatol
Ye, Lei
Rustas, Bengt-Ove
description •Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust surface-bead attachment.•Mfp-1 enables use of a generic protocol for Layer-on-layer architecture. We describe a sensing system that is able to measure pH in-vivo, in the rumen of a cow, in real time. The sensing principle is based on gravimetric transduction using a magnetoelastic ribbon functionalized by pH-sensitive nanobeads that is placed in the rumen where it is actuated and read-out wirelessly. We describe a generic procedure that enables one to deposit monolayers or multilayers of nano- and micro beads onto virtually any substrate. The topography of the resulting layers as well as interlayer coverages were characterised using optical microscopy and scanning profilometry. First we determined performance of the system in-vitro, in phosphate-buffered saline, in McDougall’s buffer and in a rumen fluid. Thereafter we also performed in-vivo measurements. Using buffers we determined pH response in the liquids both at the fundamental frequency of the functionalised foils, and at the 1st overtone. We argue that observed frequency changes vs pH are mainly due to changes of trapped liquid when the bead layers shrink or expand as a response to changed pH. The data obtained from the pH response of magnetoelastic foils at different bead coverages was modelled by a simple two-parameter model that corroborates this assumption.
doi_str_mv 10.1016/j.snb.2016.11.089
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_80296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400516318871</els_id><sourcerecordid>2086832206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-c7aac6f85735739c3cb9dfc96c5d3c178366ba16c53c7546a9d6706b798dddf03</originalsourceid><addsrcrecordid>eNp9Ul2L1DAULaLguPoDfAv4qK03TZsPfFp21RUG9EF9vaRJumaYSWrSzrD_3pSKbysk3A_OOdzcnKp6TaGhQPn7Q5PD0LQlbShtQKon1Y5KwWoGQjytdqDavu4A-ufVi5wPANAxDrsqfEtu0knPPgaigyXmV6nM7JLPWzOORJPsQvbhnuSHPLsTGWMiF5_c0eVMpjtycjovyZ1cmDPxgZz9Ob5bE03SUrqbiImXl9WzUR-ze_U3XlU_Pn38fnNX779-_nJzva9ND_1cG6G14aPsBStHGWYGZUejuOktM1RIxvmgaSmZEX3HtbJcAB-EktbaEdhVVW-6-eKmZcAp-ZNODxi1x3xcBp3WgNmhhFbxgt8_ij8uU7kDbvjRWgNqsOhAdNiNrUItQWCZTlthFbfSFrm3j8rd-p_XGNM9Jo-tYm1X0G829JTi78XlGQ9xSaHsB1uQXLK2hXVEuqFMijknN_5TpYCrB_CAxQO4egApxeKBwvmwcVzZ9dm78mrjXTDOls8zM9ro_8P-A2f1vC8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086832206</pqid></control><display><type>article</type><title>Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow</title><source>Elsevier ScienceDirect Journals</source><creator>Schanzenbach, Christoph ; Ilver, Dag ; Blomgren, Jakob ; Jonasson, Christian ; Johansson, Christer ; Krozer, Anatol ; Ye, Lei ; Rustas, Bengt-Ove</creator><creatorcontrib>Schanzenbach, Christoph ; Ilver, Dag ; Blomgren, Jakob ; Jonasson, Christian ; Johansson, Christer ; Krozer, Anatol ; Ye, Lei ; Rustas, Bengt-Ove ; Sveriges lantbruksuniversitet</creatorcontrib><description>•Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust surface-bead attachment.•Mfp-1 enables use of a generic protocol for Layer-on-layer architecture. We describe a sensing system that is able to measure pH in-vivo, in the rumen of a cow, in real time. The sensing principle is based on gravimetric transduction using a magnetoelastic ribbon functionalized by pH-sensitive nanobeads that is placed in the rumen where it is actuated and read-out wirelessly. We describe a generic procedure that enables one to deposit monolayers or multilayers of nano- and micro beads onto virtually any substrate. The topography of the resulting layers as well as interlayer coverages were characterised using optical microscopy and scanning profilometry. First we determined performance of the system in-vitro, in phosphate-buffered saline, in McDougall’s buffer and in a rumen fluid. Thereafter we also performed in-vivo measurements. Using buffers we determined pH response in the liquids both at the fundamental frequency of the functionalised foils, and at the 1st overtone. We argue that observed frequency changes vs pH are mainly due to changes of trapped liquid when the bead layers shrink or expand as a response to changed pH. The data obtained from the pH response of magnetoelastic foils at different bead coverages was modelled by a simple two-parameter model that corroborates this assumption.</description><identifier>ISSN: 0925-4005</identifier><identifier>ISSN: 1873-3077</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2016.11.089</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adhesion ; Animal and Dairy Science ; Annan kemi ; Beads ; Biochemistry and Molecular Biology ; Biokemi och molekylärbiologi ; Biologi ; Biological Sciences ; Buffers ; Chemical Sciences ; Deposition ; Detection ; Foils ; Gravimetry ; Husdjursvetenskap ; Interlayers ; Kemi ; Layer by layer deposition ; Magneto-elastic ; Magnetoelastic resonance ; Multilayers ; Mussel adhesive protein ; Mussel adhesive proteins ; Nanoparticle multilayers ; Nanoparticles ; Natural Sciences ; Naturvetenskap ; Optical microscopy ; Other Chemistry Topics ; pH sensitive polymer ; Ph sensitive polymers ; pH sensors ; Polymers ; Potentiometric sensors ; Resonant frequencies ; Rumen pH ; Substrates</subject><ispartof>Sensors and actuators. B, Chemical, 2017-04, Vol.242, p.637-644</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-c7aac6f85735739c3cb9dfc96c5d3c178366ba16c53c7546a9d6706b798dddf03</citedby><cites>FETCH-LOGICAL-c505t-c7aac6f85735739c3cb9dfc96c5d3c178366ba16c53c7546a9d6706b798dddf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2016.11.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-29324$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/fddc09bd-e074-4f29-a807-fc9ad7d96d8d$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/80296$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Schanzenbach, Christoph</creatorcontrib><creatorcontrib>Ilver, Dag</creatorcontrib><creatorcontrib>Blomgren, Jakob</creatorcontrib><creatorcontrib>Jonasson, Christian</creatorcontrib><creatorcontrib>Johansson, Christer</creatorcontrib><creatorcontrib>Krozer, Anatol</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Rustas, Bengt-Ove</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow</title><title>Sensors and actuators. B, Chemical</title><description>•Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust surface-bead attachment.•Mfp-1 enables use of a generic protocol for Layer-on-layer architecture. We describe a sensing system that is able to measure pH in-vivo, in the rumen of a cow, in real time. The sensing principle is based on gravimetric transduction using a magnetoelastic ribbon functionalized by pH-sensitive nanobeads that is placed in the rumen where it is actuated and read-out wirelessly. We describe a generic procedure that enables one to deposit monolayers or multilayers of nano- and micro beads onto virtually any substrate. The topography of the resulting layers as well as interlayer coverages were characterised using optical microscopy and scanning profilometry. First we determined performance of the system in-vitro, in phosphate-buffered saline, in McDougall’s buffer and in a rumen fluid. Thereafter we also performed in-vivo measurements. Using buffers we determined pH response in the liquids both at the fundamental frequency of the functionalised foils, and at the 1st overtone. We argue that observed frequency changes vs pH are mainly due to changes of trapped liquid when the bead layers shrink or expand as a response to changed pH. The data obtained from the pH response of magnetoelastic foils at different bead coverages was modelled by a simple two-parameter model that corroborates this assumption.</description><subject>Adhesion</subject><subject>Animal and Dairy Science</subject><subject>Annan kemi</subject><subject>Beads</subject><subject>Biochemistry and Molecular Biology</subject><subject>Biokemi och molekylärbiologi</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>Buffers</subject><subject>Chemical Sciences</subject><subject>Deposition</subject><subject>Detection</subject><subject>Foils</subject><subject>Gravimetry</subject><subject>Husdjursvetenskap</subject><subject>Interlayers</subject><subject>Kemi</subject><subject>Layer by layer deposition</subject><subject>Magneto-elastic</subject><subject>Magnetoelastic resonance</subject><subject>Multilayers</subject><subject>Mussel adhesive protein</subject><subject>Mussel adhesive proteins</subject><subject>Nanoparticle multilayers</subject><subject>Nanoparticles</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Optical microscopy</subject><subject>Other Chemistry Topics</subject><subject>pH sensitive polymer</subject><subject>Ph sensitive polymers</subject><subject>pH sensors</subject><subject>Polymers</subject><subject>Potentiometric sensors</subject><subject>Resonant frequencies</subject><subject>Rumen pH</subject><subject>Substrates</subject><issn>0925-4005</issn><issn>1873-3077</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9Ul2L1DAULaLguPoDfAv4qK03TZsPfFp21RUG9EF9vaRJumaYSWrSzrD_3pSKbysk3A_OOdzcnKp6TaGhQPn7Q5PD0LQlbShtQKon1Y5KwWoGQjytdqDavu4A-ufVi5wPANAxDrsqfEtu0knPPgaigyXmV6nM7JLPWzOORJPsQvbhnuSHPLsTGWMiF5_c0eVMpjtycjovyZ1cmDPxgZz9Ob5bE03SUrqbiImXl9WzUR-ze_U3XlU_Pn38fnNX779-_nJzva9ND_1cG6G14aPsBStHGWYGZUejuOktM1RIxvmgaSmZEX3HtbJcAB-EktbaEdhVVW-6-eKmZcAp-ZNODxi1x3xcBp3WgNmhhFbxgt8_ij8uU7kDbvjRWgNqsOhAdNiNrUItQWCZTlthFbfSFrm3j8rd-p_XGNM9Jo-tYm1X0G829JTi78XlGQ9xSaHsB1uQXLK2hXVEuqFMijknN_5TpYCrB_CAxQO4egApxeKBwvmwcVzZ9dm78mrjXTDOls8zM9ro_8P-A2f1vC8</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Schanzenbach, Christoph</creator><creator>Ilver, Dag</creator><creator>Blomgren, Jakob</creator><creator>Jonasson, Christian</creator><creator>Johansson, Christer</creator><creator>Krozer, Anatol</creator><creator>Ye, Lei</creator><creator>Rustas, Bengt-Ove</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>20170401</creationdate><title>Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow</title><author>Schanzenbach, Christoph ; Ilver, Dag ; Blomgren, Jakob ; Jonasson, Christian ; Johansson, Christer ; Krozer, Anatol ; Ye, Lei ; Rustas, Bengt-Ove</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-c7aac6f85735739c3cb9dfc96c5d3c178366ba16c53c7546a9d6706b798dddf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion</topic><topic>Animal and Dairy Science</topic><topic>Annan kemi</topic><topic>Beads</topic><topic>Biochemistry and Molecular Biology</topic><topic>Biokemi och molekylärbiologi</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>Buffers</topic><topic>Chemical Sciences</topic><topic>Deposition</topic><topic>Detection</topic><topic>Foils</topic><topic>Gravimetry</topic><topic>Husdjursvetenskap</topic><topic>Interlayers</topic><topic>Kemi</topic><topic>Layer by layer deposition</topic><topic>Magneto-elastic</topic><topic>Magnetoelastic resonance</topic><topic>Multilayers</topic><topic>Mussel adhesive protein</topic><topic>Mussel adhesive proteins</topic><topic>Nanoparticle multilayers</topic><topic>Nanoparticles</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Optical microscopy</topic><topic>Other Chemistry Topics</topic><topic>pH sensitive polymer</topic><topic>Ph sensitive polymers</topic><topic>pH sensors</topic><topic>Polymers</topic><topic>Potentiometric sensors</topic><topic>Resonant frequencies</topic><topic>Rumen pH</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schanzenbach, Christoph</creatorcontrib><creatorcontrib>Ilver, Dag</creatorcontrib><creatorcontrib>Blomgren, Jakob</creatorcontrib><creatorcontrib>Jonasson, Christian</creatorcontrib><creatorcontrib>Johansson, Christer</creatorcontrib><creatorcontrib>Krozer, Anatol</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Rustas, Bengt-Ove</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schanzenbach, Christoph</au><au>Ilver, Dag</au><au>Blomgren, Jakob</au><au>Jonasson, Christian</au><au>Johansson, Christer</au><au>Krozer, Anatol</au><au>Ye, Lei</au><au>Rustas, Bengt-Ove</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>242</volume><spage>637</spage><epage>644</epage><pages>637-644</pages><issn>0925-4005</issn><issn>1873-3077</issn><eissn>1873-3077</eissn><abstract>•Magnetoelastic resonance (MER) makes wireless measurements in-vivo possible.•Resonance frequency change on pH induced volume changes is due to trapped liquid.•pH response of functional polymer can be expected to vary between different liquids.•Mussel foot protein 1, mfp-1, enables simple and robust surface-bead attachment.•Mfp-1 enables use of a generic protocol for Layer-on-layer architecture. We describe a sensing system that is able to measure pH in-vivo, in the rumen of a cow, in real time. The sensing principle is based on gravimetric transduction using a magnetoelastic ribbon functionalized by pH-sensitive nanobeads that is placed in the rumen where it is actuated and read-out wirelessly. We describe a generic procedure that enables one to deposit monolayers or multilayers of nano- and micro beads onto virtually any substrate. The topography of the resulting layers as well as interlayer coverages were characterised using optical microscopy and scanning profilometry. First we determined performance of the system in-vitro, in phosphate-buffered saline, in McDougall’s buffer and in a rumen fluid. Thereafter we also performed in-vivo measurements. Using buffers we determined pH response in the liquids both at the fundamental frequency of the functionalised foils, and at the 1st overtone. We argue that observed frequency changes vs pH are mainly due to changes of trapped liquid when the bead layers shrink or expand as a response to changed pH. The data obtained from the pH response of magnetoelastic foils at different bead coverages was modelled by a simple two-parameter model that corroborates this assumption.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2016.11.089</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2017-04, Vol.242, p.637-644
issn 0925-4005
1873-3077
1873-3077
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_80296
source Elsevier ScienceDirect Journals
subjects Adhesion
Animal and Dairy Science
Annan kemi
Beads
Biochemistry and Molecular Biology
Biokemi och molekylärbiologi
Biologi
Biological Sciences
Buffers
Chemical Sciences
Deposition
Detection
Foils
Gravimetry
Husdjursvetenskap
Interlayers
Kemi
Layer by layer deposition
Magneto-elastic
Magnetoelastic resonance
Multilayers
Mussel adhesive protein
Mussel adhesive proteins
Nanoparticle multilayers
Nanoparticles
Natural Sciences
Naturvetenskap
Optical microscopy
Other Chemistry Topics
pH sensitive polymer
Ph sensitive polymers
pH sensors
Polymers
Potentiometric sensors
Resonant frequencies
Rumen pH
Substrates
title Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20characterisation%20of%20a%20sensing%20system%20for%20wireless%20pH%20measurements%20in%20vivo,%20in%20a%20rumen%20of%20a%20cow&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Schanzenbach,%20Christoph&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2017-04-01&rft.volume=242&rft.spage=637&rft.epage=644&rft.pages=637-644&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2016.11.089&rft_dat=%3Cproquest_swepu%3E2086832206%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086832206&rft_id=info:pmid/&rft_els_id=S0925400516318871&rfr_iscdi=true