Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood

Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary‐wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2015-01, Vol.205 (2), p.666-681
Hauptverfasser: Derba‐Maceluch, Marta, Awano, Tatsuya, Takahashi, Junko, Lucenius, Jessica, Ratke, Christine, Kontro, Inkeri, Busse‐Wicher, Marta, Kosik, Ondrej, Tanaka, Ryo, Winzéll, Anders, Kallas, Åsa, Leśniewska, Joanna, Berthold, Fredrik, Immerzeel, Peter, Teeri, Tuula T, Ezcurra, Ines, Dupree, Paul, Serimaa, Ritva, Mellerowicz, Ewa J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 2
container_start_page 666
container_title The New phytologist
container_volume 205
creator Derba‐Maceluch, Marta
Awano, Tatsuya
Takahashi, Junko
Lucenius, Jessica
Ratke, Christine
Kontro, Inkeri
Busse‐Wicher, Marta
Kosik, Ondrej
Tanaka, Ryo
Winzéll, Anders
Kallas, Åsa
Leśniewska, Joanna
Berthold, Fredrik
Immerzeel, Peter
Teeri, Tuula T
Ezcurra, Ines
Dupree, Paul
Serimaa, Ritva
Mellerowicz, Ewa J
description Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary‐wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose‐microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress‐responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.
doi_str_mv 10.1111/nph.13099
format Article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_77121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.205.2.666</jstor_id><sourcerecordid>newphytologist.205.2.666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5929-e99d0a8a042eb45f1454f13c4285e3420fd3976720a64efd781e5778ab4c404d3</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxVcIRNPCgS8AlrjAYVv_W3t9jAqlSBVUKkW9Wd5dO3Fw7K29q2S_PQ5Jc0ACX0aa-fnpzbyieIPgOcrvwvfLc0SgEM-KGaJMlDUi_HkxgxDXJaPs4aQ4TWkFIRQVwy-LE1wRyBEVs2J7N_Z91CnZ4EEwYDs55YH2XRii8mnhpjak3Esa3A7b4WHyCM6BMka3QwKtdm50IQ_Xto3B2CZaB5RfOA2sB0m3wXcqTmCjnNt1VOq1B5sQulfFC6Nc0q8P9ay4v_r84_K6vPn-5evl_KZsK4FFqYXooKoVpFg3tDKIVtQg0lJcV5pQDE1HBGccQ8WoNh2vka44r1VDWwppR86Kcq-bNrofG9lHu86OZFBWJjc2Ku6KTFpyjjD6L__J_pzLEBfy17CUiEFY1Zn_sOf7GB5HnQa5tml3F-V1GFPGiKA1p4xm9P1f6CqM0eftJa52-dVckEx93FP5oClFbY4WEJS7uGWOW_6JO7NvD4pjs9bdkXzKNwMXe2BjnZ7-rSS_3V4_SR72X6UhxOMPrzf9chqCCwubjWNYSSwZY5l_t-eNClItok3y_g5DVEGIao4JJr8BvpPPtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513098793</pqid></control><display><type>article</type><title>Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Derba‐Maceluch, Marta ; Awano, Tatsuya ; Takahashi, Junko ; Lucenius, Jessica ; Ratke, Christine ; Kontro, Inkeri ; Busse‐Wicher, Marta ; Kosik, Ondrej ; Tanaka, Ryo ; Winzéll, Anders ; Kallas, Åsa ; Leśniewska, Joanna ; Berthold, Fredrik ; Immerzeel, Peter ; Teeri, Tuula T ; Ezcurra, Ines ; Dupree, Paul ; Serimaa, Ritva ; Mellerowicz, Ewa J</creator><creatorcontrib>Derba‐Maceluch, Marta ; Awano, Tatsuya ; Takahashi, Junko ; Lucenius, Jessica ; Ratke, Christine ; Kontro, Inkeri ; Busse‐Wicher, Marta ; Kosik, Ondrej ; Tanaka, Ryo ; Winzéll, Anders ; Kallas, Åsa ; Leśniewska, Joanna ; Berthold, Fredrik ; Immerzeel, Peter ; Teeri, Tuula T ; Ezcurra, Ines ; Dupree, Paul ; Serimaa, Ritva ; Mellerowicz, Ewa J ; Sveriges lantbruksuniversitet</creatorcontrib><description>Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary‐wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose‐microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress‐responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.13099</identifier><identifier>PMID: 25307149</identifier><language>eng</language><publisher>England: Academic Press</publisher><subject>Arabidopsis ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Botanik ; Botany ; branching ; Cell Wall - enzymology ; Cell Wall - metabolism ; Cell walls ; Cellulose ; Cellulose - metabolism ; Chimera ; Elongation ; endotransglycosylase ; Enlargement ; gene expression regulation ; Gene Expression Regulation, Plant ; Genes ; growth stresses ; Hardwoods ; hybrid aspen ; hybrids ; Hydrolysis ; leaves ; Microfibrils ; Molecular weight ; Multigene Family ; plant development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified ; Populus ; Populus - cytology ; Populus - enzymology ; Populus - genetics ; Populus tremula ; Protoplasts ; secondary cell wall ; stem elongation ; Stresses ; Tension ; tension wood ; transcriptome ; Transgenic plants ; Wall deposition ; Wood ; Wood - chemistry ; Wood - cytology ; Wood - enzymology ; Wood fibers ; wood formation ; Xylan ; Xylanase ; xylanases ; Xylans - metabolism ; Xylem - cytology ; Xylem - growth &amp; development ; Xylem - metabolism ; Xylosidases - genetics ; Xylosidases - metabolism</subject><ispartof>The New phytologist, 2015-01, Vol.205 (2), p.666-681</ispartof><rights>2015 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5929-e99d0a8a042eb45f1454f13c4285e3420fd3976720a64efd781e5778ab4c404d3</citedby><cites>FETCH-LOGICAL-c5929-e99d0a8a042eb45f1454f13c4285e3420fd3976720a64efd781e5778ab4c404d3</cites><orcidid>0000-0001-6817-1031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.205.2.666$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.205.2.666$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25307149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160058$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/77121$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Derba‐Maceluch, Marta</creatorcontrib><creatorcontrib>Awano, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Junko</creatorcontrib><creatorcontrib>Lucenius, Jessica</creatorcontrib><creatorcontrib>Ratke, Christine</creatorcontrib><creatorcontrib>Kontro, Inkeri</creatorcontrib><creatorcontrib>Busse‐Wicher, Marta</creatorcontrib><creatorcontrib>Kosik, Ondrej</creatorcontrib><creatorcontrib>Tanaka, Ryo</creatorcontrib><creatorcontrib>Winzéll, Anders</creatorcontrib><creatorcontrib>Kallas, Åsa</creatorcontrib><creatorcontrib>Leśniewska, Joanna</creatorcontrib><creatorcontrib>Berthold, Fredrik</creatorcontrib><creatorcontrib>Immerzeel, Peter</creatorcontrib><creatorcontrib>Teeri, Tuula T</creatorcontrib><creatorcontrib>Ezcurra, Ines</creatorcontrib><creatorcontrib>Dupree, Paul</creatorcontrib><creatorcontrib>Serimaa, Ritva</creatorcontrib><creatorcontrib>Mellerowicz, Ewa J</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary‐wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose‐microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress‐responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.</description><subject>Arabidopsis</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Botanik</subject><subject>Botany</subject><subject>branching</subject><subject>Cell Wall - enzymology</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Chimera</subject><subject>Elongation</subject><subject>endotransglycosylase</subject><subject>Enlargement</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>growth stresses</subject><subject>Hardwoods</subject><subject>hybrid aspen</subject><subject>hybrids</subject><subject>Hydrolysis</subject><subject>leaves</subject><subject>Microfibrils</subject><subject>Molecular weight</subject><subject>Multigene Family</subject><subject>plant development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Populus</subject><subject>Populus - cytology</subject><subject>Populus - enzymology</subject><subject>Populus - genetics</subject><subject>Populus tremula</subject><subject>Protoplasts</subject><subject>secondary cell wall</subject><subject>stem elongation</subject><subject>Stresses</subject><subject>Tension</subject><subject>tension wood</subject><subject>transcriptome</subject><subject>Transgenic plants</subject><subject>Wall deposition</subject><subject>Wood</subject><subject>Wood - chemistry</subject><subject>Wood - cytology</subject><subject>Wood - enzymology</subject><subject>Wood fibers</subject><subject>wood formation</subject><subject>Xylan</subject><subject>Xylanase</subject><subject>xylanases</subject><subject>Xylans - metabolism</subject><subject>Xylem - cytology</subject><subject>Xylem - growth &amp; development</subject><subject>Xylem - metabolism</subject><subject>Xylosidases - genetics</subject><subject>Xylosidases - metabolism</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9vEzEQxVcIRNPCgS8AlrjAYVv_W3t9jAqlSBVUKkW9Wd5dO3Fw7K29q2S_PQ5Jc0ACX0aa-fnpzbyieIPgOcrvwvfLc0SgEM-KGaJMlDUi_HkxgxDXJaPs4aQ4TWkFIRQVwy-LE1wRyBEVs2J7N_Z91CnZ4EEwYDs55YH2XRii8mnhpjak3Esa3A7b4WHyCM6BMka3QwKtdm50IQ_Xto3B2CZaB5RfOA2sB0m3wXcqTmCjnNt1VOq1B5sQulfFC6Nc0q8P9ay4v_r84_K6vPn-5evl_KZsK4FFqYXooKoVpFg3tDKIVtQg0lJcV5pQDE1HBGccQ8WoNh2vka44r1VDWwppR86Kcq-bNrofG9lHu86OZFBWJjc2Ku6KTFpyjjD6L__J_pzLEBfy17CUiEFY1Zn_sOf7GB5HnQa5tml3F-V1GFPGiKA1p4xm9P1f6CqM0eftJa52-dVckEx93FP5oClFbY4WEJS7uGWOW_6JO7NvD4pjs9bdkXzKNwMXe2BjnZ7-rSS_3V4_SR72X6UhxOMPrzf9chqCCwubjWNYSSwZY5l_t-eNClItok3y_g5DVEGIao4JJr8BvpPPtA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Derba‐Maceluch, Marta</creator><creator>Awano, Tatsuya</creator><creator>Takahashi, Junko</creator><creator>Lucenius, Jessica</creator><creator>Ratke, Christine</creator><creator>Kontro, Inkeri</creator><creator>Busse‐Wicher, Marta</creator><creator>Kosik, Ondrej</creator><creator>Tanaka, Ryo</creator><creator>Winzéll, Anders</creator><creator>Kallas, Åsa</creator><creator>Leśniewska, Joanna</creator><creator>Berthold, Fredrik</creator><creator>Immerzeel, Peter</creator><creator>Teeri, Tuula T</creator><creator>Ezcurra, Ines</creator><creator>Dupree, Paul</creator><creator>Serimaa, Ritva</creator><creator>Mellerowicz, Ewa J</creator><general>Academic Press</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0001-6817-1031</orcidid></search><sort><creationdate>201501</creationdate><title>Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood</title><author>Derba‐Maceluch, Marta ; Awano, Tatsuya ; Takahashi, Junko ; Lucenius, Jessica ; Ratke, Christine ; Kontro, Inkeri ; Busse‐Wicher, Marta ; Kosik, Ondrej ; Tanaka, Ryo ; Winzéll, Anders ; Kallas, Åsa ; Leśniewska, Joanna ; Berthold, Fredrik ; Immerzeel, Peter ; Teeri, Tuula T ; Ezcurra, Ines ; Dupree, Paul ; Serimaa, Ritva ; Mellerowicz, Ewa J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5929-e99d0a8a042eb45f1454f13c4285e3420fd3976720a64efd781e5778ab4c404d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Botanik</topic><topic>Botany</topic><topic>branching</topic><topic>Cell Wall - enzymology</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Chimera</topic><topic>Elongation</topic><topic>endotransglycosylase</topic><topic>Enlargement</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>growth stresses</topic><topic>Hardwoods</topic><topic>hybrid aspen</topic><topic>hybrids</topic><topic>Hydrolysis</topic><topic>leaves</topic><topic>Microfibrils</topic><topic>Molecular weight</topic><topic>Multigene Family</topic><topic>plant development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Populus</topic><topic>Populus - cytology</topic><topic>Populus - enzymology</topic><topic>Populus - genetics</topic><topic>Populus tremula</topic><topic>Protoplasts</topic><topic>secondary cell wall</topic><topic>stem elongation</topic><topic>Stresses</topic><topic>Tension</topic><topic>tension wood</topic><topic>transcriptome</topic><topic>Transgenic plants</topic><topic>Wall deposition</topic><topic>Wood</topic><topic>Wood - chemistry</topic><topic>Wood - cytology</topic><topic>Wood - enzymology</topic><topic>Wood fibers</topic><topic>wood formation</topic><topic>Xylan</topic><topic>Xylanase</topic><topic>xylanases</topic><topic>Xylans - metabolism</topic><topic>Xylem - cytology</topic><topic>Xylem - growth &amp; development</topic><topic>Xylem - metabolism</topic><topic>Xylosidases - genetics</topic><topic>Xylosidases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derba‐Maceluch, Marta</creatorcontrib><creatorcontrib>Awano, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Junko</creatorcontrib><creatorcontrib>Lucenius, Jessica</creatorcontrib><creatorcontrib>Ratke, Christine</creatorcontrib><creatorcontrib>Kontro, Inkeri</creatorcontrib><creatorcontrib>Busse‐Wicher, Marta</creatorcontrib><creatorcontrib>Kosik, Ondrej</creatorcontrib><creatorcontrib>Tanaka, Ryo</creatorcontrib><creatorcontrib>Winzéll, Anders</creatorcontrib><creatorcontrib>Kallas, Åsa</creatorcontrib><creatorcontrib>Leśniewska, Joanna</creatorcontrib><creatorcontrib>Berthold, Fredrik</creatorcontrib><creatorcontrib>Immerzeel, Peter</creatorcontrib><creatorcontrib>Teeri, Tuula T</creatorcontrib><creatorcontrib>Ezcurra, Ines</creatorcontrib><creatorcontrib>Dupree, Paul</creatorcontrib><creatorcontrib>Serimaa, Ritva</creatorcontrib><creatorcontrib>Mellerowicz, Ewa J</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derba‐Maceluch, Marta</au><au>Awano, Tatsuya</au><au>Takahashi, Junko</au><au>Lucenius, Jessica</au><au>Ratke, Christine</au><au>Kontro, Inkeri</au><au>Busse‐Wicher, Marta</au><au>Kosik, Ondrej</au><au>Tanaka, Ryo</au><au>Winzéll, Anders</au><au>Kallas, Åsa</au><au>Leśniewska, Joanna</au><au>Berthold, Fredrik</au><au>Immerzeel, Peter</au><au>Teeri, Tuula T</au><au>Ezcurra, Ines</au><au>Dupree, Paul</au><au>Serimaa, Ritva</au><au>Mellerowicz, Ewa J</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>205</volume><issue>2</issue><spage>666</spage><epage>681</epage><pages>666-681</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary‐wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose‐microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress‐responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.</abstract><cop>England</cop><pub>Academic Press</pub><pmid>25307149</pmid><doi>10.1111/nph.13099</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6817-1031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2015-01, Vol.205 (2), p.666-681
issn 0028-646X
1469-8137
1469-8137
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_77121
source MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Arabidopsis
Arabidopsis - cytology
Arabidopsis - genetics
Arabidopsis - metabolism
Botanik
Botany
branching
Cell Wall - enzymology
Cell Wall - metabolism
Cell walls
Cellulose
Cellulose - metabolism
Chimera
Elongation
endotransglycosylase
Enlargement
gene expression regulation
Gene Expression Regulation, Plant
Genes
growth stresses
Hardwoods
hybrid aspen
hybrids
Hydrolysis
leaves
Microfibrils
Molecular weight
Multigene Family
plant development
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified
Populus
Populus - cytology
Populus - enzymology
Populus - genetics
Populus tremula
Protoplasts
secondary cell wall
stem elongation
Stresses
Tension
tension wood
transcriptome
Transgenic plants
Wall deposition
Wood
Wood - chemistry
Wood - cytology
Wood - enzymology
Wood fibers
wood formation
Xylan
Xylanase
xylanases
Xylans - metabolism
Xylem - cytology
Xylem - growth & development
Xylem - metabolism
Xylosidases - genetics
Xylosidases - metabolism
title Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20xylan%20endotransglycosylase%20PtxtXyn10A%20affects%20cellulose%20microfibril%20angle%20in%20secondary%20wall%20in%20aspen%20wood&rft.jtitle=The%20New%20phytologist&rft.au=Derba%E2%80%90Maceluch,%20Marta&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2015-01&rft.volume=205&rft.issue=2&rft.spage=666&rft.epage=681&rft.pages=666-681&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.13099&rft_dat=%3Cjstor_swepu%3Enewphytologist.205.2.666%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513098793&rft_id=info:pmid/25307149&rft_jstor_id=newphytologist.205.2.666&rfr_iscdi=true