Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce

Fiber (tracheid) length is an important trait targeted for genetic and silvicultural improvement. Such studies require large-scale non-destructive sampling, and accurate length determination. The standard procedure for non-destructive sampling is to collect increment cores, singularize their cells b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Holzforschung 2016-09, Vol.70 (9), p.829-838
Hauptverfasser: Chen, Zhi-Qiang, Abramowicz, Konrad, Raczkowski, Rafal, Ganea, Stefana, Wu, Harry X., Lundqvist, Sven-Olof, Mörling, Tommy, de Luna, Sara Sjöstedt, García Gil, María Rosario, Mellerowicz, Ewa J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 838
container_issue 9
container_start_page 829
container_title Holzforschung
container_volume 70
creator Chen, Zhi-Qiang
Abramowicz, Konrad
Raczkowski, Rafal
Ganea, Stefana
Wu, Harry X.
Lundqvist, Sven-Olof
Mörling, Tommy
de Luna, Sara Sjöstedt
García Gil, María Rosario
Mellerowicz, Ewa J.
description Fiber (tracheid) length is an important trait targeted for genetic and silvicultural improvement. Such studies require large-scale non-destructive sampling, and accurate length determination. The standard procedure for non-destructive sampling is to collect increment cores, singularize their cells by maceration, measure them with optical analyzer and apply various corrections to suppress influence of non-fiber particles and cut fibers, as fibers are cut by the corer. The recently developed expectation-maximization method (EM) not only addresses the problem of non-fibers and cut fibers, but also corrects for the sampling bias. Here, the performance of the EM method has been evaluated by comparing it with length-weighing and squared length-weighing, both implemented in fiber analyzers, and with microscopy data for intact fibers, corrected for sampling bias, as the reference. This was done for 12-mm increment cores from 16 Norway spruce ( (L.) Karst) trees on fibers from rings 8–11 (counted from pith), representing juvenile wood of interest in breeding programs. The EM-estimates provided mean-fiber-lengths with bias of only +2.7% and low scatter. Length-weighing and length -weighing gave biases of -7.3% and +9.3%, respectively, and larger scatter. The suggested EM approach constitutes a more accurate non-destructive method for fiber length (FL) determination, expected to be applicable also to other conifers.
doi_str_mv 10.1515/hf-2015-0138
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_77120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4132241981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-541acc4ef56aee99cb5ad259c4b789e066b96d2aa9647e7d06b152750dfed4c13</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBuAIUYmlcOMHWOIIBjv-SrhV5VMq5QKIm-U4k91USRzGsbb773EahDigchpbemY0mrconnH2iiuuXh86WjKuKOOielDsuBSGSiF_PCx2jPGKikqwR8XjGG_yVzHBd8XtZ1gOoSVdQOK8T-gWIF3fAJIBpv1yIC0sgGM_uaUPE-kwjKSfPMII00J8QIh3zYPDPdDo3QBkDnMaNu8mN5xiNv1ErgMe3YnEGZOHJ8VZ54YIT3_X8-Lb-3dfLz_Sqy8fPl1eXFEvS71QJXleS0KntAOoa98o15aq9rIxVQ1M66bWbelcraUB0zLdcFUaxdoOWum5OC_oNjceYU6NnbEfHZ5scL2NQ2ocrsVGsMbwkt3r3_bfL2zAvU1jsrw0Wqz-xf899plrXmb9fNMzhp8J4mJvQsJ8o2h5xYyWgt3t8HJTHkOMCN2fqZzZNWl76OyatF2TzvzNxo9uyFm1sMd0yo-_Zv-jzbC6KmvxCzDZslY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807643020</pqid></control><display><type>article</type><title>Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce</title><source>De Gruyter journals</source><creator>Chen, Zhi-Qiang ; Abramowicz, Konrad ; Raczkowski, Rafal ; Ganea, Stefana ; Wu, Harry X. ; Lundqvist, Sven-Olof ; Mörling, Tommy ; de Luna, Sara Sjöstedt ; García Gil, María Rosario ; Mellerowicz, Ewa J.</creator><creatorcontrib>Chen, Zhi-Qiang ; Abramowicz, Konrad ; Raczkowski, Rafal ; Ganea, Stefana ; Wu, Harry X. ; Lundqvist, Sven-Olof ; Mörling, Tommy ; de Luna, Sara Sjöstedt ; García Gil, María Rosario ; Mellerowicz, Ewa J. ; Sveriges lantbruksuniversitet</creatorcontrib><description>Fiber (tracheid) length is an important trait targeted for genetic and silvicultural improvement. Such studies require large-scale non-destructive sampling, and accurate length determination. The standard procedure for non-destructive sampling is to collect increment cores, singularize their cells by maceration, measure them with optical analyzer and apply various corrections to suppress influence of non-fiber particles and cut fibers, as fibers are cut by the corer. The recently developed expectation-maximization method (EM) not only addresses the problem of non-fibers and cut fibers, but also corrects for the sampling bias. Here, the performance of the EM method has been evaluated by comparing it with length-weighing and squared length-weighing, both implemented in fiber analyzers, and with microscopy data for intact fibers, corrected for sampling bias, as the reference. This was done for 12-mm increment cores from 16 Norway spruce ( (L.) Karst) trees on fibers from rings 8–11 (counted from pith), representing juvenile wood of interest in breeding programs. The EM-estimates provided mean-fiber-lengths with bias of only +2.7% and low scatter. Length-weighing and length -weighing gave biases of -7.3% and +9.3%, respectively, and larger scatter. The suggested EM approach constitutes a more accurate non-destructive method for fiber length (FL) determination, expected to be applicable also to other conifers.</description><identifier>ISSN: 0018-3830</identifier><identifier>ISSN: 1437-434X</identifier><identifier>EISSN: 1437-434X</identifier><identifier>DOI: 10.1515/hf-2015-0138</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Analyzers ; Bias ; Breeding ; Conifers ; Cores ; Expectation - maximizations ; expectation-maximization ; Fiber length ; Fibers ; Forest Science ; Forestry ; Increment core ; Maceration ; Maximum principle ; Microscopy ; Nondestructive examination ; Nondestructive testing ; optical fiber analyzer ; Optical fibers ; Picea abies ; Pine trees ; Plants (botany) ; Sampling ; Scattering ; Silviculture ; Skogsvetenskap ; Tracheid length ; Weighing ; Wood</subject><ispartof>Holzforschung, 2016-09, Vol.70 (9), p.829-838</ispartof><rights>Copyright Walter de Gruyter GmbH Sep 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-541acc4ef56aee99cb5ad259c4b789e066b96d2aa9647e7d06b152750dfed4c13</citedby><cites>FETCH-LOGICAL-c426t-541acc4ef56aee99cb5ad259c4b789e066b96d2aa9647e7d06b152750dfed4c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/hf-2015-0138/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/hf-2015-0138/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,66754,68538</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-12612$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-127630$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/77120$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhi-Qiang</creatorcontrib><creatorcontrib>Abramowicz, Konrad</creatorcontrib><creatorcontrib>Raczkowski, Rafal</creatorcontrib><creatorcontrib>Ganea, Stefana</creatorcontrib><creatorcontrib>Wu, Harry X.</creatorcontrib><creatorcontrib>Lundqvist, Sven-Olof</creatorcontrib><creatorcontrib>Mörling, Tommy</creatorcontrib><creatorcontrib>de Luna, Sara Sjöstedt</creatorcontrib><creatorcontrib>García Gil, María Rosario</creatorcontrib><creatorcontrib>Mellerowicz, Ewa J.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce</title><title>Holzforschung</title><description>Fiber (tracheid) length is an important trait targeted for genetic and silvicultural improvement. Such studies require large-scale non-destructive sampling, and accurate length determination. The standard procedure for non-destructive sampling is to collect increment cores, singularize their cells by maceration, measure them with optical analyzer and apply various corrections to suppress influence of non-fiber particles and cut fibers, as fibers are cut by the corer. The recently developed expectation-maximization method (EM) not only addresses the problem of non-fibers and cut fibers, but also corrects for the sampling bias. Here, the performance of the EM method has been evaluated by comparing it with length-weighing and squared length-weighing, both implemented in fiber analyzers, and with microscopy data for intact fibers, corrected for sampling bias, as the reference. This was done for 12-mm increment cores from 16 Norway spruce ( (L.) Karst) trees on fibers from rings 8–11 (counted from pith), representing juvenile wood of interest in breeding programs. The EM-estimates provided mean-fiber-lengths with bias of only +2.7% and low scatter. Length-weighing and length -weighing gave biases of -7.3% and +9.3%, respectively, and larger scatter. The suggested EM approach constitutes a more accurate non-destructive method for fiber length (FL) determination, expected to be applicable also to other conifers.</description><subject>Analyzers</subject><subject>Bias</subject><subject>Breeding</subject><subject>Conifers</subject><subject>Cores</subject><subject>Expectation - maximizations</subject><subject>expectation-maximization</subject><subject>Fiber length</subject><subject>Fibers</subject><subject>Forest Science</subject><subject>Forestry</subject><subject>Increment core</subject><subject>Maceration</subject><subject>Maximum principle</subject><subject>Microscopy</subject><subject>Nondestructive examination</subject><subject>Nondestructive testing</subject><subject>optical fiber analyzer</subject><subject>Optical fibers</subject><subject>Picea abies</subject><subject>Pine trees</subject><subject>Plants (botany)</subject><subject>Sampling</subject><subject>Scattering</subject><subject>Silviculture</subject><subject>Skogsvetenskap</subject><subject>Tracheid length</subject><subject>Weighing</subject><subject>Wood</subject><issn>0018-3830</issn><issn>1437-434X</issn><issn>1437-434X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBuAIUYmlcOMHWOIIBjv-SrhV5VMq5QKIm-U4k91USRzGsbb773EahDigchpbemY0mrconnH2iiuuXh86WjKuKOOielDsuBSGSiF_PCx2jPGKikqwR8XjGG_yVzHBd8XtZ1gOoSVdQOK8T-gWIF3fAJIBpv1yIC0sgGM_uaUPE-kwjKSfPMII00J8QIh3zYPDPdDo3QBkDnMaNu8mN5xiNv1ErgMe3YnEGZOHJ8VZ54YIT3_X8-Lb-3dfLz_Sqy8fPl1eXFEvS71QJXleS0KntAOoa98o15aq9rIxVQ1M66bWbelcraUB0zLdcFUaxdoOWum5OC_oNjceYU6NnbEfHZ5scL2NQ2ocrsVGsMbwkt3r3_bfL2zAvU1jsrw0Wqz-xf899plrXmb9fNMzhp8J4mJvQsJ8o2h5xYyWgt3t8HJTHkOMCN2fqZzZNWl76OyatF2TzvzNxo9uyFm1sMd0yo-_Zv-jzbC6KmvxCzDZslY</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Chen, Zhi-Qiang</creator><creator>Abramowicz, Konrad</creator><creator>Raczkowski, Rafal</creator><creator>Ganea, Stefana</creator><creator>Wu, Harry X.</creator><creator>Lundqvist, Sven-Olof</creator><creator>Mörling, Tommy</creator><creator>de Luna, Sara Sjöstedt</creator><creator>García Gil, María Rosario</creator><creator>Mellerowicz, Ewa J.</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>20160901</creationdate><title>Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce</title><author>Chen, Zhi-Qiang ; Abramowicz, Konrad ; Raczkowski, Rafal ; Ganea, Stefana ; Wu, Harry X. ; Lundqvist, Sven-Olof ; Mörling, Tommy ; de Luna, Sara Sjöstedt ; García Gil, María Rosario ; Mellerowicz, Ewa J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-541acc4ef56aee99cb5ad259c4b789e066b96d2aa9647e7d06b152750dfed4c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analyzers</topic><topic>Bias</topic><topic>Breeding</topic><topic>Conifers</topic><topic>Cores</topic><topic>Expectation - maximizations</topic><topic>expectation-maximization</topic><topic>Fiber length</topic><topic>Fibers</topic><topic>Forest Science</topic><topic>Forestry</topic><topic>Increment core</topic><topic>Maceration</topic><topic>Maximum principle</topic><topic>Microscopy</topic><topic>Nondestructive examination</topic><topic>Nondestructive testing</topic><topic>optical fiber analyzer</topic><topic>Optical fibers</topic><topic>Picea abies</topic><topic>Pine trees</topic><topic>Plants (botany)</topic><topic>Sampling</topic><topic>Scattering</topic><topic>Silviculture</topic><topic>Skogsvetenskap</topic><topic>Tracheid length</topic><topic>Weighing</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhi-Qiang</creatorcontrib><creatorcontrib>Abramowicz, Konrad</creatorcontrib><creatorcontrib>Raczkowski, Rafal</creatorcontrib><creatorcontrib>Ganea, Stefana</creatorcontrib><creatorcontrib>Wu, Harry X.</creatorcontrib><creatorcontrib>Lundqvist, Sven-Olof</creatorcontrib><creatorcontrib>Mörling, Tommy</creatorcontrib><creatorcontrib>de Luna, Sara Sjöstedt</creatorcontrib><creatorcontrib>García Gil, María Rosario</creatorcontrib><creatorcontrib>Mellerowicz, Ewa J.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Holzforschung</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhi-Qiang</au><au>Abramowicz, Konrad</au><au>Raczkowski, Rafal</au><au>Ganea, Stefana</au><au>Wu, Harry X.</au><au>Lundqvist, Sven-Olof</au><au>Mörling, Tommy</au><au>de Luna, Sara Sjöstedt</au><au>García Gil, María Rosario</au><au>Mellerowicz, Ewa J.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce</atitle><jtitle>Holzforschung</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>70</volume><issue>9</issue><spage>829</spage><epage>838</epage><pages>829-838</pages><issn>0018-3830</issn><issn>1437-434X</issn><eissn>1437-434X</eissn><abstract>Fiber (tracheid) length is an important trait targeted for genetic and silvicultural improvement. Such studies require large-scale non-destructive sampling, and accurate length determination. The standard procedure for non-destructive sampling is to collect increment cores, singularize their cells by maceration, measure them with optical analyzer and apply various corrections to suppress influence of non-fiber particles and cut fibers, as fibers are cut by the corer. The recently developed expectation-maximization method (EM) not only addresses the problem of non-fibers and cut fibers, but also corrects for the sampling bias. Here, the performance of the EM method has been evaluated by comparing it with length-weighing and squared length-weighing, both implemented in fiber analyzers, and with microscopy data for intact fibers, corrected for sampling bias, as the reference. This was done for 12-mm increment cores from 16 Norway spruce ( (L.) Karst) trees on fibers from rings 8–11 (counted from pith), representing juvenile wood of interest in breeding programs. The EM-estimates provided mean-fiber-lengths with bias of only +2.7% and low scatter. Length-weighing and length -weighing gave biases of -7.3% and +9.3%, respectively, and larger scatter. The suggested EM approach constitutes a more accurate non-destructive method for fiber length (FL) determination, expected to be applicable also to other conifers.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/hf-2015-0138</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-3830
ispartof Holzforschung, 2016-09, Vol.70 (9), p.829-838
issn 0018-3830
1437-434X
1437-434X
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_77120
source De Gruyter journals
subjects Analyzers
Bias
Breeding
Conifers
Cores
Expectation - maximizations
expectation-maximization
Fiber length
Fibers
Forest Science
Forestry
Increment core
Maceration
Maximum principle
Microscopy
Nondestructive examination
Nondestructive testing
optical fiber analyzer
Optical fibers
Picea abies
Pine trees
Plants (botany)
Sampling
Scattering
Silviculture
Skogsvetenskap
Tracheid length
Weighing
Wood
title Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20for%20accurate%20fiber%20length%20determination%20from%20increment%20cores%20for%20large-scale%20population%20analyses%20in%20Norway%20spruce&rft.jtitle=Holzforschung&rft.au=Chen,%20Zhi-Qiang&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2016-09-01&rft.volume=70&rft.issue=9&rft.spage=829&rft.epage=838&rft.pages=829-838&rft.issn=0018-3830&rft.eissn=1437-434X&rft_id=info:doi/10.1515/hf-2015-0138&rft_dat=%3Cproquest_swepu%3E4132241981%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807643020&rft_id=info:pmid/&rfr_iscdi=true