Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa

Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2014-07, Vol.165 (3), p.1285-1301
Hauptverfasser: Procko, Carl, Crenshaw, Charisse Michelle, Ljung, Karin, Noel, Joseph Patrick, Chory, Joanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1301
container_issue 3
container_start_page 1285
container_title Plant physiology (Bethesda)
container_volume 165
creator Procko, Carl
Crenshaw, Charisse Michelle
Ljung, Karin
Noel, Joseph Patrick
Chory, Joanne
description Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.
doi_str_mv 10.1104/pp.114.241844
format Article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_67180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43191030</jstor_id><sourcerecordid>43191030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-f9ad3db5c4dbb4c9c0ec47ca57f1fdbf18573440f06390e32f10e9608d2446ba3</originalsourceid><addsrcrecordid>eNpFkL1v2zAQxYmiQeMmHTu20NhFyVE8SdSYGqljIECBfgyZCIo8IgpkkSElpP7vS8OpO73Dvd97w2PsI4crzgGvQ8iKVxVyifiGrXgtqrKqUb5lK4B8g5TdOXuf0hMAcMHxHTuvUHa84bBiD2s_70eyfio3NFHUM9niZvkzTMU2FT_oeRli_jgfi5-P2lK5nexi8uduH7w5ZItN9C_zY5ETX6NOaTC6iDroS3bm9Jjow6tesN_fbn-t78r775vt-ua-NFjLuXSdtsL2tUHb92g6A2SwNbpuHXe2d1zWrUAEB43ogETlOFDXgLQVYtNrccHKY296obD0KsRhp-NeeT2oNC69jgdRiVTTcgmZ_3LkQ_TPC6VZ7YZkaBz1RH5JisuqqTtsAf9Xm-hTiuRO5RzUYX0VQlZUx_Uz__m1eul3ZE_0v7kz8OkIPKXZx5OPgnfZBfEXSWqKVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826594704</pqid></control><display><type>article</type><title>Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Procko, Carl ; Crenshaw, Charisse Michelle ; Ljung, Karin ; Noel, Joseph Patrick ; Chory, Joanne</creator><creatorcontrib>Procko, Carl ; Crenshaw, Charisse Michelle ; Ljung, Karin ; Noel, Joseph Patrick ; Chory, Joanne ; Sveriges lantbruksuniversitet</creatorcontrib><description>Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.114.241844</identifier><identifier>PMID: 24891610</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Auxins ; Botanik ; Botany ; Cotyledons ; Fatty acids ; Gene expression ; Genes ; Hypocotyls ; Plant growth ; Plant growth regulators ; Plants ; Seedlings ; SIGNALING AND RESPONSE</subject><ispartof>Plant physiology (Bethesda), 2014-07, Vol.165 (3), p.1285-1301</ispartof><rights>2014 American Society of Plant Biologists</rights><rights>2014 American Society of Plant Biologists. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-f9ad3db5c4dbb4c9c0ec47ca57f1fdbf18573440f06390e32f10e9608d2446ba3</citedby><cites>FETCH-LOGICAL-c458t-f9ad3db5c4dbb4c9c0ec47ca57f1fdbf18573440f06390e32f10e9608d2446ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43191030$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43191030$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24891610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/67180$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Procko, Carl</creatorcontrib><creatorcontrib>Crenshaw, Charisse Michelle</creatorcontrib><creatorcontrib>Ljung, Karin</creatorcontrib><creatorcontrib>Noel, Joseph Patrick</creatorcontrib><creatorcontrib>Chory, Joanne</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.</description><subject>Auxins</subject><subject>Botanik</subject><subject>Botany</subject><subject>Cotyledons</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Hypocotyls</subject><subject>Plant growth</subject><subject>Plant growth regulators</subject><subject>Plants</subject><subject>Seedlings</subject><subject>SIGNALING AND RESPONSE</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkL1v2zAQxYmiQeMmHTu20NhFyVE8SdSYGqljIECBfgyZCIo8IgpkkSElpP7vS8OpO73Dvd97w2PsI4crzgGvQ8iKVxVyifiGrXgtqrKqUb5lK4B8g5TdOXuf0hMAcMHxHTuvUHa84bBiD2s_70eyfio3NFHUM9niZvkzTMU2FT_oeRli_jgfi5-P2lK5nexi8uduH7w5ZItN9C_zY5ETX6NOaTC6iDroS3bm9Jjow6tesN_fbn-t78r775vt-ua-NFjLuXSdtsL2tUHb92g6A2SwNbpuHXe2d1zWrUAEB43ogETlOFDXgLQVYtNrccHKY296obD0KsRhp-NeeT2oNC69jgdRiVTTcgmZ_3LkQ_TPC6VZ7YZkaBz1RH5JisuqqTtsAf9Xm-hTiuRO5RzUYX0VQlZUx_Uz__m1eul3ZE_0v7kz8OkIPKXZx5OPgnfZBfEXSWqKVg</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Procko, Carl</creator><creator>Crenshaw, Charisse Michelle</creator><creator>Ljung, Karin</creator><creator>Noel, Joseph Patrick</creator><creator>Chory, Joanne</creator><general>American Society of Plant Biologists</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20140701</creationdate><title>Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa</title><author>Procko, Carl ; Crenshaw, Charisse Michelle ; Ljung, Karin ; Noel, Joseph Patrick ; Chory, Joanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-f9ad3db5c4dbb4c9c0ec47ca57f1fdbf18573440f06390e32f10e9608d2446ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Auxins</topic><topic>Botanik</topic><topic>Botany</topic><topic>Cotyledons</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Hypocotyls</topic><topic>Plant growth</topic><topic>Plant growth regulators</topic><topic>Plants</topic><topic>Seedlings</topic><topic>SIGNALING AND RESPONSE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Procko, Carl</creatorcontrib><creatorcontrib>Crenshaw, Charisse Michelle</creatorcontrib><creatorcontrib>Ljung, Karin</creatorcontrib><creatorcontrib>Noel, Joseph Patrick</creatorcontrib><creatorcontrib>Chory, Joanne</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Procko, Carl</au><au>Crenshaw, Charisse Michelle</au><au>Ljung, Karin</au><au>Noel, Joseph Patrick</au><au>Chory, Joanne</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>165</volume><issue>3</issue><spage>1285</spage><epage>1301</epage><pages>1285-1301</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><abstract>Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>24891610</pmid><doi>10.1104/pp.114.241844</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2014-07, Vol.165 (3), p.1285-1301
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_67180
source JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Auxins
Botanik
Botany
Cotyledons
Fatty acids
Gene expression
Genes
Hypocotyls
Plant growth
Plant growth regulators
Plants
Seedlings
SIGNALING AND RESPONSE
title Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cotyledon-Generated%20Auxin%20Is%20Required%20for%20Shade-Induced%20Hypocotyl%20Growth%20in%20Brassica%20rapa&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Procko,%20Carl&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2014-07-01&rft.volume=165&rft.issue=3&rft.spage=1285&rft.epage=1301&rft.pages=1285-1301&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.114.241844&rft_dat=%3Cjstor_swepu%3E43191030%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826594704&rft_id=info:pmid/24891610&rft_jstor_id=43191030&rfr_iscdi=true