Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa
Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2014-07, Vol.165 (3), p.1285-1301 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1301 |
---|---|
container_issue | 3 |
container_start_page | 1285 |
container_title | Plant physiology (Bethesda) |
container_volume | 165 |
creator | Procko, Carl Crenshaw, Charisse Michelle Ljung, Karin Noel, Joseph Patrick Chory, Joanne |
description | Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant. |
doi_str_mv | 10.1104/pp.114.241844 |
format | Article |
fullrecord | <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_67180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43191030</jstor_id><sourcerecordid>43191030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-f9ad3db5c4dbb4c9c0ec47ca57f1fdbf18573440f06390e32f10e9608d2446ba3</originalsourceid><addsrcrecordid>eNpFkL1v2zAQxYmiQeMmHTu20NhFyVE8SdSYGqljIECBfgyZCIo8IgpkkSElpP7vS8OpO73Dvd97w2PsI4crzgGvQ8iKVxVyifiGrXgtqrKqUb5lK4B8g5TdOXuf0hMAcMHxHTuvUHa84bBiD2s_70eyfio3NFHUM9niZvkzTMU2FT_oeRli_jgfi5-P2lK5nexi8uduH7w5ZItN9C_zY5ETX6NOaTC6iDroS3bm9Jjow6tesN_fbn-t78r775vt-ua-NFjLuXSdtsL2tUHb92g6A2SwNbpuHXe2d1zWrUAEB43ogETlOFDXgLQVYtNrccHKY296obD0KsRhp-NeeT2oNC69jgdRiVTTcgmZ_3LkQ_TPC6VZ7YZkaBz1RH5JisuqqTtsAf9Xm-hTiuRO5RzUYX0VQlZUx_Uz__m1eul3ZE_0v7kz8OkIPKXZx5OPgnfZBfEXSWqKVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826594704</pqid></control><display><type>article</type><title>Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Procko, Carl ; Crenshaw, Charisse Michelle ; Ljung, Karin ; Noel, Joseph Patrick ; Chory, Joanne</creator><creatorcontrib>Procko, Carl ; Crenshaw, Charisse Michelle ; Ljung, Karin ; Noel, Joseph Patrick ; Chory, Joanne ; Sveriges lantbruksuniversitet</creatorcontrib><description>Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.114.241844</identifier><identifier>PMID: 24891610</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Auxins ; Botanik ; Botany ; Cotyledons ; Fatty acids ; Gene expression ; Genes ; Hypocotyls ; Plant growth ; Plant growth regulators ; Plants ; Seedlings ; SIGNALING AND RESPONSE</subject><ispartof>Plant physiology (Bethesda), 2014-07, Vol.165 (3), p.1285-1301</ispartof><rights>2014 American Society of Plant Biologists</rights><rights>2014 American Society of Plant Biologists. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-f9ad3db5c4dbb4c9c0ec47ca57f1fdbf18573440f06390e32f10e9608d2446ba3</citedby><cites>FETCH-LOGICAL-c458t-f9ad3db5c4dbb4c9c0ec47ca57f1fdbf18573440f06390e32f10e9608d2446ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43191030$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43191030$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24891610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/67180$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Procko, Carl</creatorcontrib><creatorcontrib>Crenshaw, Charisse Michelle</creatorcontrib><creatorcontrib>Ljung, Karin</creatorcontrib><creatorcontrib>Noel, Joseph Patrick</creatorcontrib><creatorcontrib>Chory, Joanne</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.</description><subject>Auxins</subject><subject>Botanik</subject><subject>Botany</subject><subject>Cotyledons</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Hypocotyls</subject><subject>Plant growth</subject><subject>Plant growth regulators</subject><subject>Plants</subject><subject>Seedlings</subject><subject>SIGNALING AND RESPONSE</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkL1v2zAQxYmiQeMmHTu20NhFyVE8SdSYGqljIECBfgyZCIo8IgpkkSElpP7vS8OpO73Dvd97w2PsI4crzgGvQ8iKVxVyifiGrXgtqrKqUb5lK4B8g5TdOXuf0hMAcMHxHTuvUHa84bBiD2s_70eyfio3NFHUM9niZvkzTMU2FT_oeRli_jgfi5-P2lK5nexi8uduH7w5ZItN9C_zY5ETX6NOaTC6iDroS3bm9Jjow6tesN_fbn-t78r775vt-ua-NFjLuXSdtsL2tUHb92g6A2SwNbpuHXe2d1zWrUAEB43ogETlOFDXgLQVYtNrccHKY296obD0KsRhp-NeeT2oNC69jgdRiVTTcgmZ_3LkQ_TPC6VZ7YZkaBz1RH5JisuqqTtsAf9Xm-hTiuRO5RzUYX0VQlZUx_Uz__m1eul3ZE_0v7kz8OkIPKXZx5OPgnfZBfEXSWqKVg</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Procko, Carl</creator><creator>Crenshaw, Charisse Michelle</creator><creator>Ljung, Karin</creator><creator>Noel, Joseph Patrick</creator><creator>Chory, Joanne</creator><general>American Society of Plant Biologists</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20140701</creationdate><title>Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa</title><author>Procko, Carl ; Crenshaw, Charisse Michelle ; Ljung, Karin ; Noel, Joseph Patrick ; Chory, Joanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-f9ad3db5c4dbb4c9c0ec47ca57f1fdbf18573440f06390e32f10e9608d2446ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Auxins</topic><topic>Botanik</topic><topic>Botany</topic><topic>Cotyledons</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Hypocotyls</topic><topic>Plant growth</topic><topic>Plant growth regulators</topic><topic>Plants</topic><topic>Seedlings</topic><topic>SIGNALING AND RESPONSE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Procko, Carl</creatorcontrib><creatorcontrib>Crenshaw, Charisse Michelle</creatorcontrib><creatorcontrib>Ljung, Karin</creatorcontrib><creatorcontrib>Noel, Joseph Patrick</creatorcontrib><creatorcontrib>Chory, Joanne</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Procko, Carl</au><au>Crenshaw, Charisse Michelle</au><au>Ljung, Karin</au><au>Noel, Joseph Patrick</au><au>Chory, Joanne</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>165</volume><issue>3</issue><spage>1285</spage><epage>1301</epage><pages>1285-1301</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><abstract>Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>24891610</pmid><doi>10.1104/pp.114.241844</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2014-07, Vol.165 (3), p.1285-1301 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_67180 |
source | JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Auxins Botanik Botany Cotyledons Fatty acids Gene expression Genes Hypocotyls Plant growth Plant growth regulators Plants Seedlings SIGNALING AND RESPONSE |
title | Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cotyledon-Generated%20Auxin%20Is%20Required%20for%20Shade-Induced%20Hypocotyl%20Growth%20in%20Brassica%20rapa&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Procko,%20Carl&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2014-07-01&rft.volume=165&rft.issue=3&rft.spage=1285&rft.epage=1301&rft.pages=1285-1301&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.114.241844&rft_dat=%3Cjstor_swepu%3E43191030%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826594704&rft_id=info:pmid/24891610&rft_jstor_id=43191030&rfr_iscdi=true |