Representative regional sampling of carbon dioxide and methane concentrations in hemiboreal headwater streams reveal underestimates in less systematic approaches

Boreal headwater streams have been identified as hot spots for evasion of greenhouse gases (GHGs). This study was the first to systematically determine the concentrations of CO2 and CH4 in hemiboreal headwater streams. The use of a headspace sampling method focusing on GHGs in combination with a sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2014-04, Vol.28 (4), p.465-479
Hauptverfasser: Wallin, Marcus B., Löfgren, Stefan, Erlandsson, Martin, Bishop, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boreal headwater streams have been identified as hot spots for evasion of greenhouse gases (GHGs). This study was the first to systematically determine the concentrations of CO2 and CH4 in hemiboreal headwater streams. The use of a headspace sampling method focusing on GHGs in combination with a statistically representative selection of more than 200 streams across two regions in Sweden was the basis for defining the base flow concentrations of CO2 and CH4. All streams were supersaturated relative to the atmosphere in CO2 and the majority in CH4 for the 82% of streams in which CH4 was detected. The spatial variability in both CO2 and CH4 was high but positively related to total organic carbon, mean annual temperature, and proportion of peatland in the catchment. There were, however, regional differences in the spatial controls, which are something that predictive models need to consider. The data set allowed for comparison between a headspace and an alkalinity‐based method for determining CO2. More than 50% of the streams contained no alkalinity which made the alkalinity‐based determination of CO2 impossible. In addition, half of the streams with alkalinity had alkalinities low enough (
ISSN:0886-6236
1944-9224
1944-9224
DOI:10.1002/2013GB004715