Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway

In forest inventories, regression models are often applied to predict quantities such as biomass at the level of sampling units. In this paper, we propose a model-based inference framework for combining sampling and model errors in the variance estimation. It was applied to airborne laser (LiDAR) da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 2011, Vol.41 (1), p.96
Hauptverfasser: Stahl, Goran, Holm, Soren, Gregoire, Timothy G, Gobakken, Terje, Naesset, Erik, Nelson, Ross
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 96
container_title Canadian journal of forest research
container_volume 41
creator Stahl, Goran
Holm, Soren
Gregoire, Timothy G
Gobakken, Terje
Naesset, Erik
Nelson, Ross
description In forest inventories, regression models are often applied to predict quantities such as biomass at the level of sampling units. In this paper, we propose a model-based inference framework for combining sampling and model errors in the variance estimation. It was applied to airborne laser (LiDAR) data sets from Hedmark County, Norway, where the model error proportion of the total variance was found to be large for both scanning (airborne laser scanning) and profiling LiDAR when biomass was estimated. With profiling LiDAR, the model error variance component for the entire county was as large as 71% whereas for airborne laser scanning, it was 43% of the total variance. Partly, this reflects the better accuracy of the pixel-based regression models estimated from scanner data as compared with the models estimated from profiler data. The framework proposed in our study can be applied in all types of sample surveys where model-based predictions are made at the level of individual sampling units. Especially, it should be useful in cases where model-assisted inference cannot be applied due to the lack of a probability sample from the target population or due to problems of correctly matching observations of auxiliary and target variables.
doi_str_mv 10.1139/X10-161
format Article
fullrecord <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_58906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A250825257</galeid><sourcerecordid>A250825257</sourcerecordid><originalsourceid>FETCH-LOGICAL-f444t-77dccc142375ff88299dc3032e43d8e8dcf6542751f73abd2d65c0f13071b89e3</originalsourceid><addsrcrecordid>eNqV0F9rFDEQAPBFFDyr-BEM9Ulwa_5sNtnH46q2cFZoLfgWssnkSN3dbJNd6317c1yhHtyL5GEg-c1kZoriLcFnhLDm00-CS1KTZ8WCUCzLGjPxvFhgXPGS41q8LF6ldIcxZjXDi0J9Cxa6stUJLPKDgwiDAeRCRK0PvU4JQZp8rycfhgyQRmt_vrxGSfdjByjN8Tdsdw8XYHsdf6FVmIdp-xFdhfigt6-LF053Cd48xpPi9svnH6uLcv396-VquS5dVVVTKYQ1xpCKMsGdk5I2jTUMMwoVsxKkNa7mFRWcOMF0a6mtucGOMCxIKxtgJ0W5r5seYJxbNcbcc9yqoL1K3dzquAsqgeKywXX2p3s_xnA_5xHVXZjjkFtUksmGSMl36P0ebXQHKm8nTFGb3iejlpRjSTnl4unrA7WBAaLuwgDO5-sDf3rEm9Hfq3_R2RGUj4Xem6NVPxwkZDPBn2mj55TU5c31f9irQ_tub50OSm-iT-r2huK8edLQpqaS_QXY477C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>838918856</pqid></control><display><type>article</type><title>Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway</title><source>Alma/SFX Local Collection</source><creator>Stahl, Goran ; Holm, Soren ; Gregoire, Timothy G ; Gobakken, Terje ; Naesset, Erik ; Nelson, Ross</creator><creatorcontrib>Stahl, Goran ; Holm, Soren ; Gregoire, Timothy G ; Gobakken, Terje ; Naesset, Erik ; Nelson, Ross ; Sveriges lantbruksuniversitet</creatorcontrib><description>In forest inventories, regression models are often applied to predict quantities such as biomass at the level of sampling units. In this paper, we propose a model-based inference framework for combining sampling and model errors in the variance estimation. It was applied to airborne laser (LiDAR) data sets from Hedmark County, Norway, where the model error proportion of the total variance was found to be large for both scanning (airborne laser scanning) and profiling LiDAR when biomass was estimated. With profiling LiDAR, the model error variance component for the entire county was as large as 71% whereas for airborne laser scanning, it was 43% of the total variance. Partly, this reflects the better accuracy of the pixel-based regression models estimated from scanner data as compared with the models estimated from profiler data. The framework proposed in our study can be applied in all types of sample surveys where model-based predictions are made at the level of individual sampling units. Especially, it should be useful in cases where model-assisted inference cannot be applied due to the lack of a probability sample from the target population or due to problems of correctly matching observations of auxiliary and target variables.</description><identifier>ISSN: 0045-5067</identifier><identifier>ISSN: 1208-6037</identifier><identifier>EISSN: 1208-6037</identifier><identifier>DOI: 10.1139/X10-161</identifier><identifier>CODEN: CJFRAR</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>Biomass ; Deductive reasoning ; Environmental aspects ; Equipment and supplies ; Estimating techniques ; Forest management ; Forest Science ; Forestry ; Lidar ; Methods ; Optical radar ; Properties ; Regression analysis ; Sampling techniques ; Skogsvetenskap ; Statistical inference</subject><ispartof>Canadian journal of forest research, 2011, Vol.41 (1), p.96</ispartof><rights>COPYRIGHT 2011 NRC Research Press</rights><rights>Copyright National Research Council of Canada Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/58906$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Stahl, Goran</creatorcontrib><creatorcontrib>Holm, Soren</creatorcontrib><creatorcontrib>Gregoire, Timothy G</creatorcontrib><creatorcontrib>Gobakken, Terje</creatorcontrib><creatorcontrib>Naesset, Erik</creatorcontrib><creatorcontrib>Nelson, Ross</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway</title><title>Canadian journal of forest research</title><description>In forest inventories, regression models are often applied to predict quantities such as biomass at the level of sampling units. In this paper, we propose a model-based inference framework for combining sampling and model errors in the variance estimation. It was applied to airborne laser (LiDAR) data sets from Hedmark County, Norway, where the model error proportion of the total variance was found to be large for both scanning (airborne laser scanning) and profiling LiDAR when biomass was estimated. With profiling LiDAR, the model error variance component for the entire county was as large as 71% whereas for airborne laser scanning, it was 43% of the total variance. Partly, this reflects the better accuracy of the pixel-based regression models estimated from scanner data as compared with the models estimated from profiler data. The framework proposed in our study can be applied in all types of sample surveys where model-based predictions are made at the level of individual sampling units. Especially, it should be useful in cases where model-assisted inference cannot be applied due to the lack of a probability sample from the target population or due to problems of correctly matching observations of auxiliary and target variables.</description><subject>Biomass</subject><subject>Deductive reasoning</subject><subject>Environmental aspects</subject><subject>Equipment and supplies</subject><subject>Estimating techniques</subject><subject>Forest management</subject><subject>Forest Science</subject><subject>Forestry</subject><subject>Lidar</subject><subject>Methods</subject><subject>Optical radar</subject><subject>Properties</subject><subject>Regression analysis</subject><subject>Sampling techniques</subject><subject>Skogsvetenskap</subject><subject>Statistical inference</subject><issn>0045-5067</issn><issn>1208-6037</issn><issn>1208-6037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqV0F9rFDEQAPBFFDyr-BEM9Ulwa_5sNtnH46q2cFZoLfgWssnkSN3dbJNd6317c1yhHtyL5GEg-c1kZoriLcFnhLDm00-CS1KTZ8WCUCzLGjPxvFhgXPGS41q8LF6ldIcxZjXDi0J9Cxa6stUJLPKDgwiDAeRCRK0PvU4JQZp8rycfhgyQRmt_vrxGSfdjByjN8Tdsdw8XYHsdf6FVmIdp-xFdhfigt6-LF053Cd48xpPi9svnH6uLcv396-VquS5dVVVTKYQ1xpCKMsGdk5I2jTUMMwoVsxKkNa7mFRWcOMF0a6mtucGOMCxIKxtgJ0W5r5seYJxbNcbcc9yqoL1K3dzquAsqgeKywXX2p3s_xnA_5xHVXZjjkFtUksmGSMl36P0ebXQHKm8nTFGb3iejlpRjSTnl4unrA7WBAaLuwgDO5-sDf3rEm9Hfq3_R2RGUj4Xem6NVPxwkZDPBn2mj55TU5c31f9irQ_tub50OSm-iT-r2huK8edLQpqaS_QXY477C</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Stahl, Goran</creator><creator>Holm, Soren</creator><creator>Gregoire, Timothy G</creator><creator>Gobakken, Terje</creator><creator>Naesset, Erik</creator><creator>Nelson, Ross</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>FBQ</scope><scope>ISN</scope><scope>ISR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>U9A</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>2011</creationdate><title>Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway</title><author>Stahl, Goran ; Holm, Soren ; Gregoire, Timothy G ; Gobakken, Terje ; Naesset, Erik ; Nelson, Ross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f444t-77dccc142375ff88299dc3032e43d8e8dcf6542751f73abd2d65c0f13071b89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biomass</topic><topic>Deductive reasoning</topic><topic>Environmental aspects</topic><topic>Equipment and supplies</topic><topic>Estimating techniques</topic><topic>Forest management</topic><topic>Forest Science</topic><topic>Forestry</topic><topic>Lidar</topic><topic>Methods</topic><topic>Optical radar</topic><topic>Properties</topic><topic>Regression analysis</topic><topic>Sampling techniques</topic><topic>Skogsvetenskap</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stahl, Goran</creatorcontrib><creatorcontrib>Holm, Soren</creatorcontrib><creatorcontrib>Gregoire, Timothy G</creatorcontrib><creatorcontrib>Gobakken, Terje</creatorcontrib><creatorcontrib>Naesset, Erik</creatorcontrib><creatorcontrib>Nelson, Ross</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>AGRIS</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Canadian journal of forest research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stahl, Goran</au><au>Holm, Soren</au><au>Gregoire, Timothy G</au><au>Gobakken, Terje</au><au>Naesset, Erik</au><au>Nelson, Ross</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway</atitle><jtitle>Canadian journal of forest research</jtitle><date>2011</date><risdate>2011</risdate><volume>41</volume><issue>1</issue><spage>96</spage><pages>96-</pages><issn>0045-5067</issn><issn>1208-6037</issn><eissn>1208-6037</eissn><coden>CJFRAR</coden><abstract>In forest inventories, regression models are often applied to predict quantities such as biomass at the level of sampling units. In this paper, we propose a model-based inference framework for combining sampling and model errors in the variance estimation. It was applied to airborne laser (LiDAR) data sets from Hedmark County, Norway, where the model error proportion of the total variance was found to be large for both scanning (airborne laser scanning) and profiling LiDAR when biomass was estimated. With profiling LiDAR, the model error variance component for the entire county was as large as 71% whereas for airborne laser scanning, it was 43% of the total variance. Partly, this reflects the better accuracy of the pixel-based regression models estimated from scanner data as compared with the models estimated from profiler data. The framework proposed in our study can be applied in all types of sample surveys where model-based predictions are made at the level of individual sampling units. Especially, it should be useful in cases where model-assisted inference cannot be applied due to the lack of a probability sample from the target population or due to problems of correctly matching observations of auxiliary and target variables.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/X10-161</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-5067
ispartof Canadian journal of forest research, 2011, Vol.41 (1), p.96
issn 0045-5067
1208-6037
1208-6037
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_58906
source Alma/SFX Local Collection
subjects Biomass
Deductive reasoning
Environmental aspects
Equipment and supplies
Estimating techniques
Forest management
Forest Science
Forestry
Lidar
Methods
Optical radar
Properties
Regression analysis
Sampling techniques
Skogsvetenskap
Statistical inference
title Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20inference%20for%20biomass%20estimation%20in%20a%20LiDAR%20sample%20survey%20in%20Hedmark%20County,%20Norway&rft.jtitle=Canadian%20journal%20of%20forest%20research&rft.au=Stahl,%20Goran&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2011&rft.volume=41&rft.issue=1&rft.spage=96&rft.pages=96-&rft.issn=0045-5067&rft.eissn=1208-6037&rft.coden=CJFRAR&rft_id=info:doi/10.1139/X10-161&rft_dat=%3Cgale_swepu%3EA250825257%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=838918856&rft_id=info:pmid/&rft_galeid=A250825257&rfr_iscdi=true