Detection of crayfish plague spores in large freshwater systems

Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of applied ecology 2014-04, Vol.51 (2), p.544-553
Hauptverfasser: Strand, David A, Jussila, Japo, Johnsen, Stein I, Viljamaa‐Dirks, Satu, Edsman, Lennart, Wiik‐Nielsen, Jannicke, Viljugrein, Hildegunn, Engdahl, Frederik, Vrålstad, Trude, Morgan, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 2
container_start_page 544
container_title The Journal of applied ecology
container_volume 51
creator Strand, David A
Jussila, Japo
Johnsen, Stein I
Viljamaa‐Dirks, Satu
Edsman, Lennart
Wiik‐Nielsen, Jannicke
Viljugrein, Hildegunn
Engdahl, Frederik
Vrålstad, Trude
Morgan, Eric
description Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundance in water systems that either host non‐indigenous crayfish species (NICS) or experience crayfish plague outbreaks. We tested two large‐scale filtering approaches to generate new insight about the abundance and dynamics of A. astaci spores in natural freshwater systems. Depth filtration (DF) and dead‐end ultrafiltration (DEUF) followed by A. astaci‐specific quantitative real‐time PCR was used to monitor A. astaci spores in large Nordic lakes hosting A. astaci‐positive Pacifastacus leniusculus, the dominating NICS in Northern Europe. Crayfish and water were sampled together to compare the A. astaci pathogen load in tissues, A. astaci prevalence in the population and the corresponding spore density in water. Samples were also obtained from a river where indigenous noble crayfish suffered from acute crayfish plague. The sensitivity of the filtering techniques was evaluated using simulation of random events. We detected A. astaci spores in lakes hosting NICS with both filtering methods but predominantly at concentrations below c. 1 spore L⁻¹. We found a significant positive association between A. astaci spore density in water, the A. astaci prevalence in the corresponding NICS population and the tissue pathogen load. Water from the river with the ongoing crayfish plague outbreak contained overall c. 43 times more spores L⁻¹ than water hosting NICS. Both filtering techniques proved suitable and equally sensitive, but simulations suggest that an optimization of the spore recovery could yield a 10‐fold increase in the DEUF‐method sensitivity. Synthesis and application. Our study demonstrates a low amount of pathogen spores are present in aquatic environments with non‐indigenous crayfish species, emphasizing the need for large‐volume filtering techniques for successful detection. The approach can be used for risk assessments and to improve conservation and management strategies of crayfish in Europe. Applications of this method include targeted disease surveillance, habitat evaluation prior to crayfish re‐stockings and water monitoring that can minimize disease transmission and spread, for example in crayfish farms and prior to fish movements for stocking purposes.
doi_str_mv 10.1111/1365-2664.12218
format Article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_56106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24032385</jstor_id><sourcerecordid>24032385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4708-5bbec6e9d0aa042b979bea147531899d1b026ea2a73a4015777d6e7c7b1482da3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRiMEEkvhzAkRCXFMO2PHcXJCqJRCVamVoGdrkp1ss0rXwZNotf8eh7TLsb6M7HnzbH1OkvcIpxjXGerCZKoo8lNUCssXyep48jJZASjMygrwdfJGZAsAldF6lXz5xiM3Y-d3qW_TJtCh7eQ-HXraTJzK4ANL2u3SnsKG0zbu7vc0ckjlICM_yNvkVUu98LvHepLcfb_4ff4ju765_Hn-9TprcgtlZuqam4KrNRBBrurKVjUT5tZoLKtqjTWogkmR1ZQDGmvtumDb2BrzUq1JnyTZ4pU9D1PthtA9UDg4T52TfqopzMUJO1MgFJH_tPBD8H8mltFt_RR28YkODYK1BnGmzhaqCV4kcHv0Irg5VTdn6OYM3b9U48TnRy9JQ30baNd0chxTpdZW5RA5s3D7rufDc1p3dXvx5P-wzG1l9OG_NyqVLk3sf1z6LXlHmxDvvvulAPP5R1Eh6L_BDJhL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510775116</pqid></control><display><type>article</type><title>Detection of crayfish plague spores in large freshwater systems</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Strand, David A ; Jussila, Japo ; Johnsen, Stein I ; Viljamaa‐Dirks, Satu ; Edsman, Lennart ; Wiik‐Nielsen, Jannicke ; Viljugrein, Hildegunn ; Engdahl, Frederik ; Vrålstad, Trude ; Morgan, Eric</creator><creatorcontrib>Strand, David A ; Jussila, Japo ; Johnsen, Stein I ; Viljamaa‐Dirks, Satu ; Edsman, Lennart ; Wiik‐Nielsen, Jannicke ; Viljugrein, Hildegunn ; Engdahl, Frederik ; Vrålstad, Trude ; Morgan, Eric ; Sveriges lantbruksuniversitet</creatorcontrib><description>Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundance in water systems that either host non‐indigenous crayfish species (NICS) or experience crayfish plague outbreaks. We tested two large‐scale filtering approaches to generate new insight about the abundance and dynamics of A. astaci spores in natural freshwater systems. Depth filtration (DF) and dead‐end ultrafiltration (DEUF) followed by A. astaci‐specific quantitative real‐time PCR was used to monitor A. astaci spores in large Nordic lakes hosting A. astaci‐positive Pacifastacus leniusculus, the dominating NICS in Northern Europe. Crayfish and water were sampled together to compare the A. astaci pathogen load in tissues, A. astaci prevalence in the population and the corresponding spore density in water. Samples were also obtained from a river where indigenous noble crayfish suffered from acute crayfish plague. The sensitivity of the filtering techniques was evaluated using simulation of random events. We detected A. astaci spores in lakes hosting NICS with both filtering methods but predominantly at concentrations below c. 1 spore L⁻¹. We found a significant positive association between A. astaci spore density in water, the A. astaci prevalence in the corresponding NICS population and the tissue pathogen load. Water from the river with the ongoing crayfish plague outbreak contained overall c. 43 times more spores L⁻¹ than water hosting NICS. Both filtering techniques proved suitable and equally sensitive, but simulations suggest that an optimization of the spore recovery could yield a 10‐fold increase in the DEUF‐method sensitivity. Synthesis and application. Our study demonstrates a low amount of pathogen spores are present in aquatic environments with non‐indigenous crayfish species, emphasizing the need for large‐volume filtering techniques for successful detection. The approach can be used for risk assessments and to improve conservation and management strategies of crayfish in Europe. Applications of this method include targeted disease surveillance, habitat evaluation prior to crayfish re‐stockings and water monitoring that can minimize disease transmission and spread, for example in crayfish farms and prior to fish movements for stocking purposes.</description><identifier>ISSN: 0021-8901</identifier><identifier>ISSN: 1365-2664</identifier><identifier>EISSN: 1365-2664</identifier><identifier>DOI: 10.1111/1365-2664.12218</identifier><identifier>CODEN: JAPEAI</identifier><language>eng</language><publisher>Oxford: John Wiley &amp; Sons Ltd</publisher><subject>alien species ; Animal and plant ecology ; Animal, plant and microbial ecology ; Annan veterinärmedicin ; Aphanomyces astaci ; Applied ecology ; aquatic environment ; Biochemistry and Molecular Biology ; Biokemi och molekylärbiologi ; Biological and medical sciences ; Comparative analysis ; Conservation, protection and management of environment and wildlife ; Crayfish ; Crustacea ; dead‐end ultrafiltration ; depth filtration ; disease surveillance ; disease transmission ; Ecology ; Ekologi ; environmental DNA ; environmental monitoring ; Epidemics ; farms ; Fish ; Fresh water ; Fresh water ecosystems ; freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects ; glass fibre filter ; habitats ; Invertebrates ; Lakes ; Monitoring for management ; Nonnative species ; Other Veterinary Science ; Pacifastacus leniusculus ; Parks, reserves, wildlife conservation. Endangered species: population survey and restocking ; Pathogens ; plague ; Polymerase chain reaction ; Risk assessment ; rivers ; signal crayfish ; Spores ; Synecology ; Tissues ; Ultrafiltration ; Water filtration ; Water samples ; Zoologi ; Zoology ; zoospores</subject><ispartof>The Journal of applied ecology, 2014-04, Vol.51 (2), p.544-553</ispartof><rights>2014 British Ecological Society</rights><rights>2013 The Authors. Journal of Applied Ecology © 2013 British Ecological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Apr 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4708-5bbec6e9d0aa042b979bea147531899d1b026ea2a73a4015777d6e7c7b1482da3</citedby><cites>FETCH-LOGICAL-c4708-5bbec6e9d0aa042b979bea147531899d1b026ea2a73a4015777d6e7c7b1482da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24032385$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24032385$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28337240$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/56106$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Strand, David A</creatorcontrib><creatorcontrib>Jussila, Japo</creatorcontrib><creatorcontrib>Johnsen, Stein I</creatorcontrib><creatorcontrib>Viljamaa‐Dirks, Satu</creatorcontrib><creatorcontrib>Edsman, Lennart</creatorcontrib><creatorcontrib>Wiik‐Nielsen, Jannicke</creatorcontrib><creatorcontrib>Viljugrein, Hildegunn</creatorcontrib><creatorcontrib>Engdahl, Frederik</creatorcontrib><creatorcontrib>Vrålstad, Trude</creatorcontrib><creatorcontrib>Morgan, Eric</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Detection of crayfish plague spores in large freshwater systems</title><title>The Journal of applied ecology</title><description>Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundance in water systems that either host non‐indigenous crayfish species (NICS) or experience crayfish plague outbreaks. We tested two large‐scale filtering approaches to generate new insight about the abundance and dynamics of A. astaci spores in natural freshwater systems. Depth filtration (DF) and dead‐end ultrafiltration (DEUF) followed by A. astaci‐specific quantitative real‐time PCR was used to monitor A. astaci spores in large Nordic lakes hosting A. astaci‐positive Pacifastacus leniusculus, the dominating NICS in Northern Europe. Crayfish and water were sampled together to compare the A. astaci pathogen load in tissues, A. astaci prevalence in the population and the corresponding spore density in water. Samples were also obtained from a river where indigenous noble crayfish suffered from acute crayfish plague. The sensitivity of the filtering techniques was evaluated using simulation of random events. We detected A. astaci spores in lakes hosting NICS with both filtering methods but predominantly at concentrations below c. 1 spore L⁻¹. We found a significant positive association between A. astaci spore density in water, the A. astaci prevalence in the corresponding NICS population and the tissue pathogen load. Water from the river with the ongoing crayfish plague outbreak contained overall c. 43 times more spores L⁻¹ than water hosting NICS. Both filtering techniques proved suitable and equally sensitive, but simulations suggest that an optimization of the spore recovery could yield a 10‐fold increase in the DEUF‐method sensitivity. Synthesis and application. Our study demonstrates a low amount of pathogen spores are present in aquatic environments with non‐indigenous crayfish species, emphasizing the need for large‐volume filtering techniques for successful detection. The approach can be used for risk assessments and to improve conservation and management strategies of crayfish in Europe. Applications of this method include targeted disease surveillance, habitat evaluation prior to crayfish re‐stockings and water monitoring that can minimize disease transmission and spread, for example in crayfish farms and prior to fish movements for stocking purposes.</description><subject>alien species</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Annan veterinärmedicin</subject><subject>Aphanomyces astaci</subject><subject>Applied ecology</subject><subject>aquatic environment</subject><subject>Biochemistry and Molecular Biology</subject><subject>Biokemi och molekylärbiologi</subject><subject>Biological and medical sciences</subject><subject>Comparative analysis</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Crayfish</subject><subject>Crustacea</subject><subject>dead‐end ultrafiltration</subject><subject>depth filtration</subject><subject>disease surveillance</subject><subject>disease transmission</subject><subject>Ecology</subject><subject>Ekologi</subject><subject>environmental DNA</subject><subject>environmental monitoring</subject><subject>Epidemics</subject><subject>farms</subject><subject>Fish</subject><subject>Fresh water</subject><subject>Fresh water ecosystems</subject><subject>freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>glass fibre filter</subject><subject>habitats</subject><subject>Invertebrates</subject><subject>Lakes</subject><subject>Monitoring for management</subject><subject>Nonnative species</subject><subject>Other Veterinary Science</subject><subject>Pacifastacus leniusculus</subject><subject>Parks, reserves, wildlife conservation. Endangered species: population survey and restocking</subject><subject>Pathogens</subject><subject>plague</subject><subject>Polymerase chain reaction</subject><subject>Risk assessment</subject><subject>rivers</subject><subject>signal crayfish</subject><subject>Spores</subject><subject>Synecology</subject><subject>Tissues</subject><subject>Ultrafiltration</subject><subject>Water filtration</subject><subject>Water samples</subject><subject>Zoologi</subject><subject>Zoology</subject><subject>zoospores</subject><issn>0021-8901</issn><issn>1365-2664</issn><issn>1365-2664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQRiMEEkvhzAkRCXFMO2PHcXJCqJRCVamVoGdrkp1ss0rXwZNotf8eh7TLsb6M7HnzbH1OkvcIpxjXGerCZKoo8lNUCssXyep48jJZASjMygrwdfJGZAsAldF6lXz5xiM3Y-d3qW_TJtCh7eQ-HXraTJzK4ANL2u3SnsKG0zbu7vc0ckjlICM_yNvkVUu98LvHepLcfb_4ff4ju765_Hn-9TprcgtlZuqam4KrNRBBrurKVjUT5tZoLKtqjTWogkmR1ZQDGmvtumDb2BrzUq1JnyTZ4pU9D1PthtA9UDg4T52TfqopzMUJO1MgFJH_tPBD8H8mltFt_RR28YkODYK1BnGmzhaqCV4kcHv0Irg5VTdn6OYM3b9U48TnRy9JQ30baNd0chxTpdZW5RA5s3D7rufDc1p3dXvx5P-wzG1l9OG_NyqVLk3sf1z6LXlHmxDvvvulAPP5R1Eh6L_BDJhL</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Strand, David A</creator><creator>Jussila, Japo</creator><creator>Johnsen, Stein I</creator><creator>Viljamaa‐Dirks, Satu</creator><creator>Edsman, Lennart</creator><creator>Wiik‐Nielsen, Jannicke</creator><creator>Viljugrein, Hildegunn</creator><creator>Engdahl, Frederik</creator><creator>Vrålstad, Trude</creator><creator>Morgan, Eric</creator><general>John Wiley &amp; Sons Ltd</general><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>201404</creationdate><title>Detection of crayfish plague spores in large freshwater systems</title><author>Strand, David A ; Jussila, Japo ; Johnsen, Stein I ; Viljamaa‐Dirks, Satu ; Edsman, Lennart ; Wiik‐Nielsen, Jannicke ; Viljugrein, Hildegunn ; Engdahl, Frederik ; Vrålstad, Trude ; Morgan, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4708-5bbec6e9d0aa042b979bea147531899d1b026ea2a73a4015777d6e7c7b1482da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alien species</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Annan veterinärmedicin</topic><topic>Aphanomyces astaci</topic><topic>Applied ecology</topic><topic>aquatic environment</topic><topic>Biochemistry and Molecular Biology</topic><topic>Biokemi och molekylärbiologi</topic><topic>Biological and medical sciences</topic><topic>Comparative analysis</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Crayfish</topic><topic>Crustacea</topic><topic>dead‐end ultrafiltration</topic><topic>depth filtration</topic><topic>disease surveillance</topic><topic>disease transmission</topic><topic>Ecology</topic><topic>Ekologi</topic><topic>environmental DNA</topic><topic>environmental monitoring</topic><topic>Epidemics</topic><topic>farms</topic><topic>Fish</topic><topic>Fresh water</topic><topic>Fresh water ecosystems</topic><topic>freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>glass fibre filter</topic><topic>habitats</topic><topic>Invertebrates</topic><topic>Lakes</topic><topic>Monitoring for management</topic><topic>Nonnative species</topic><topic>Other Veterinary Science</topic><topic>Pacifastacus leniusculus</topic><topic>Parks, reserves, wildlife conservation. Endangered species: population survey and restocking</topic><topic>Pathogens</topic><topic>plague</topic><topic>Polymerase chain reaction</topic><topic>Risk assessment</topic><topic>rivers</topic><topic>signal crayfish</topic><topic>Spores</topic><topic>Synecology</topic><topic>Tissues</topic><topic>Ultrafiltration</topic><topic>Water filtration</topic><topic>Water samples</topic><topic>Zoologi</topic><topic>Zoology</topic><topic>zoospores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strand, David A</creatorcontrib><creatorcontrib>Jussila, Japo</creatorcontrib><creatorcontrib>Johnsen, Stein I</creatorcontrib><creatorcontrib>Viljamaa‐Dirks, Satu</creatorcontrib><creatorcontrib>Edsman, Lennart</creatorcontrib><creatorcontrib>Wiik‐Nielsen, Jannicke</creatorcontrib><creatorcontrib>Viljugrein, Hildegunn</creatorcontrib><creatorcontrib>Engdahl, Frederik</creatorcontrib><creatorcontrib>Vrålstad, Trude</creatorcontrib><creatorcontrib>Morgan, Eric</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>The Journal of applied ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strand, David A</au><au>Jussila, Japo</au><au>Johnsen, Stein I</au><au>Viljamaa‐Dirks, Satu</au><au>Edsman, Lennart</au><au>Wiik‐Nielsen, Jannicke</au><au>Viljugrein, Hildegunn</au><au>Engdahl, Frederik</au><au>Vrålstad, Trude</au><au>Morgan, Eric</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of crayfish plague spores in large freshwater systems</atitle><jtitle>The Journal of applied ecology</jtitle><date>2014-04</date><risdate>2014</risdate><volume>51</volume><issue>2</issue><spage>544</spage><epage>553</epage><pages>544-553</pages><issn>0021-8901</issn><issn>1365-2664</issn><eissn>1365-2664</eissn><coden>JAPEAI</coden><abstract>Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundance in water systems that either host non‐indigenous crayfish species (NICS) or experience crayfish plague outbreaks. We tested two large‐scale filtering approaches to generate new insight about the abundance and dynamics of A. astaci spores in natural freshwater systems. Depth filtration (DF) and dead‐end ultrafiltration (DEUF) followed by A. astaci‐specific quantitative real‐time PCR was used to monitor A. astaci spores in large Nordic lakes hosting A. astaci‐positive Pacifastacus leniusculus, the dominating NICS in Northern Europe. Crayfish and water were sampled together to compare the A. astaci pathogen load in tissues, A. astaci prevalence in the population and the corresponding spore density in water. Samples were also obtained from a river where indigenous noble crayfish suffered from acute crayfish plague. The sensitivity of the filtering techniques was evaluated using simulation of random events. We detected A. astaci spores in lakes hosting NICS with both filtering methods but predominantly at concentrations below c. 1 spore L⁻¹. We found a significant positive association between A. astaci spore density in water, the A. astaci prevalence in the corresponding NICS population and the tissue pathogen load. Water from the river with the ongoing crayfish plague outbreak contained overall c. 43 times more spores L⁻¹ than water hosting NICS. Both filtering techniques proved suitable and equally sensitive, but simulations suggest that an optimization of the spore recovery could yield a 10‐fold increase in the DEUF‐method sensitivity. Synthesis and application. Our study demonstrates a low amount of pathogen spores are present in aquatic environments with non‐indigenous crayfish species, emphasizing the need for large‐volume filtering techniques for successful detection. The approach can be used for risk assessments and to improve conservation and management strategies of crayfish in Europe. Applications of this method include targeted disease surveillance, habitat evaluation prior to crayfish re‐stockings and water monitoring that can minimize disease transmission and spread, for example in crayfish farms and prior to fish movements for stocking purposes.</abstract><cop>Oxford</cop><pub>John Wiley &amp; Sons Ltd</pub><doi>10.1111/1365-2664.12218</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8901
ispartof The Journal of applied ecology, 2014-04, Vol.51 (2), p.544-553
issn 0021-8901
1365-2664
1365-2664
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_56106
source Jstor Complete Legacy; Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects alien species
Animal and plant ecology
Animal, plant and microbial ecology
Annan veterinärmedicin
Aphanomyces astaci
Applied ecology
aquatic environment
Biochemistry and Molecular Biology
Biokemi och molekylärbiologi
Biological and medical sciences
Comparative analysis
Conservation, protection and management of environment and wildlife
Crayfish
Crustacea
dead‐end ultrafiltration
depth filtration
disease surveillance
disease transmission
Ecology
Ekologi
environmental DNA
environmental monitoring
Epidemics
farms
Fish
Fresh water
Fresh water ecosystems
freshwater
Fundamental and applied biological sciences. Psychology
General aspects
glass fibre filter
habitats
Invertebrates
Lakes
Monitoring for management
Nonnative species
Other Veterinary Science
Pacifastacus leniusculus
Parks, reserves, wildlife conservation. Endangered species: population survey and restocking
Pathogens
plague
Polymerase chain reaction
Risk assessment
rivers
signal crayfish
Spores
Synecology
Tissues
Ultrafiltration
Water filtration
Water samples
Zoologi
Zoology
zoospores
title Detection of crayfish plague spores in large freshwater systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20crayfish%20plague%20spores%20in%20large%20freshwater%20systems&rft.jtitle=The%20Journal%20of%20applied%20ecology&rft.au=Strand,%20David%20A&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2014-04&rft.volume=51&rft.issue=2&rft.spage=544&rft.epage=553&rft.pages=544-553&rft.issn=0021-8901&rft.eissn=1365-2664&rft.coden=JAPEAI&rft_id=info:doi/10.1111/1365-2664.12218&rft_dat=%3Cjstor_swepu%3E24032385%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510775116&rft_id=info:pmid/&rft_jstor_id=24032385&rfr_iscdi=true