Detection of crayfish plague spores in large freshwater systems
Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundan...
Gespeichert in:
Veröffentlicht in: | The Journal of applied ecology 2014-04, Vol.51 (2), p.544-553 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 2 |
container_start_page | 544 |
container_title | The Journal of applied ecology |
container_volume | 51 |
creator | Strand, David A Jussila, Japo Johnsen, Stein I Viljamaa‐Dirks, Satu Edsman, Lennart Wiik‐Nielsen, Jannicke Viljugrein, Hildegunn Engdahl, Frederik Vrålstad, Trude Morgan, Eric |
description | Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundance in water systems that either host non‐indigenous crayfish species (NICS) or experience crayfish plague outbreaks. We tested two large‐scale filtering approaches to generate new insight about the abundance and dynamics of A. astaci spores in natural freshwater systems. Depth filtration (DF) and dead‐end ultrafiltration (DEUF) followed by A. astaci‐specific quantitative real‐time PCR was used to monitor A. astaci spores in large Nordic lakes hosting A. astaci‐positive Pacifastacus leniusculus, the dominating NICS in Northern Europe. Crayfish and water were sampled together to compare the A. astaci pathogen load in tissues, A. astaci prevalence in the population and the corresponding spore density in water. Samples were also obtained from a river where indigenous noble crayfish suffered from acute crayfish plague. The sensitivity of the filtering techniques was evaluated using simulation of random events. We detected A. astaci spores in lakes hosting NICS with both filtering methods but predominantly at concentrations below c. 1 spore L⁻¹. We found a significant positive association between A. astaci spore density in water, the A. astaci prevalence in the corresponding NICS population and the tissue pathogen load. Water from the river with the ongoing crayfish plague outbreak contained overall c. 43 times more spores L⁻¹ than water hosting NICS. Both filtering techniques proved suitable and equally sensitive, but simulations suggest that an optimization of the spore recovery could yield a 10‐fold increase in the DEUF‐method sensitivity. Synthesis and application. Our study demonstrates a low amount of pathogen spores are present in aquatic environments with non‐indigenous crayfish species, emphasizing the need for large‐volume filtering techniques for successful detection. The approach can be used for risk assessments and to improve conservation and management strategies of crayfish in Europe. Applications of this method include targeted disease surveillance, habitat evaluation prior to crayfish re‐stockings and water monitoring that can minimize disease transmission and spread, for example in crayfish farms and prior to fish movements for stocking purposes. |
doi_str_mv | 10.1111/1365-2664.12218 |
format | Article |
fullrecord | <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_56106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24032385</jstor_id><sourcerecordid>24032385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4708-5bbec6e9d0aa042b979bea147531899d1b026ea2a73a4015777d6e7c7b1482da3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRiMEEkvhzAkRCXFMO2PHcXJCqJRCVamVoGdrkp1ss0rXwZNotf8eh7TLsb6M7HnzbH1OkvcIpxjXGerCZKoo8lNUCssXyep48jJZASjMygrwdfJGZAsAldF6lXz5xiM3Y-d3qW_TJtCh7eQ-HXraTJzK4ANL2u3SnsKG0zbu7vc0ckjlICM_yNvkVUu98LvHepLcfb_4ff4ju765_Hn-9TprcgtlZuqam4KrNRBBrurKVjUT5tZoLKtqjTWogkmR1ZQDGmvtumDb2BrzUq1JnyTZ4pU9D1PthtA9UDg4T52TfqopzMUJO1MgFJH_tPBD8H8mltFt_RR28YkODYK1BnGmzhaqCV4kcHv0Irg5VTdn6OYM3b9U48TnRy9JQ30baNd0chxTpdZW5RA5s3D7rufDc1p3dXvx5P-wzG1l9OG_NyqVLk3sf1z6LXlHmxDvvvulAPP5R1Eh6L_BDJhL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510775116</pqid></control><display><type>article</type><title>Detection of crayfish plague spores in large freshwater systems</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Strand, David A ; Jussila, Japo ; Johnsen, Stein I ; Viljamaa‐Dirks, Satu ; Edsman, Lennart ; Wiik‐Nielsen, Jannicke ; Viljugrein, Hildegunn ; Engdahl, Frederik ; Vrålstad, Trude ; Morgan, Eric</creator><creatorcontrib>Strand, David A ; Jussila, Japo ; Johnsen, Stein I ; Viljamaa‐Dirks, Satu ; Edsman, Lennart ; Wiik‐Nielsen, Jannicke ; Viljugrein, Hildegunn ; Engdahl, Frederik ; Vrålstad, Trude ; Morgan, Eric ; Sveriges lantbruksuniversitet</creatorcontrib><description>Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundance in water systems that either host non‐indigenous crayfish species (NICS) or experience crayfish plague outbreaks. We tested two large‐scale filtering approaches to generate new insight about the abundance and dynamics of A. astaci spores in natural freshwater systems. Depth filtration (DF) and dead‐end ultrafiltration (DEUF) followed by A. astaci‐specific quantitative real‐time PCR was used to monitor A. astaci spores in large Nordic lakes hosting A. astaci‐positive Pacifastacus leniusculus, the dominating NICS in Northern Europe. Crayfish and water were sampled together to compare the A. astaci pathogen load in tissues, A. astaci prevalence in the population and the corresponding spore density in water. Samples were also obtained from a river where indigenous noble crayfish suffered from acute crayfish plague. The sensitivity of the filtering techniques was evaluated using simulation of random events. We detected A. astaci spores in lakes hosting NICS with both filtering methods but predominantly at concentrations below c. 1 spore L⁻¹. We found a significant positive association between A. astaci spore density in water, the A. astaci prevalence in the corresponding NICS population and the tissue pathogen load. Water from the river with the ongoing crayfish plague outbreak contained overall c. 43 times more spores L⁻¹ than water hosting NICS. Both filtering techniques proved suitable and equally sensitive, but simulations suggest that an optimization of the spore recovery could yield a 10‐fold increase in the DEUF‐method sensitivity. Synthesis and application. Our study demonstrates a low amount of pathogen spores are present in aquatic environments with non‐indigenous crayfish species, emphasizing the need for large‐volume filtering techniques for successful detection. The approach can be used for risk assessments and to improve conservation and management strategies of crayfish in Europe. Applications of this method include targeted disease surveillance, habitat evaluation prior to crayfish re‐stockings and water monitoring that can minimize disease transmission and spread, for example in crayfish farms and prior to fish movements for stocking purposes.</description><identifier>ISSN: 0021-8901</identifier><identifier>ISSN: 1365-2664</identifier><identifier>EISSN: 1365-2664</identifier><identifier>DOI: 10.1111/1365-2664.12218</identifier><identifier>CODEN: JAPEAI</identifier><language>eng</language><publisher>Oxford: John Wiley & Sons Ltd</publisher><subject>alien species ; Animal and plant ecology ; Animal, plant and microbial ecology ; Annan veterinärmedicin ; Aphanomyces astaci ; Applied ecology ; aquatic environment ; Biochemistry and Molecular Biology ; Biokemi och molekylärbiologi ; Biological and medical sciences ; Comparative analysis ; Conservation, protection and management of environment and wildlife ; Crayfish ; Crustacea ; dead‐end ultrafiltration ; depth filtration ; disease surveillance ; disease transmission ; Ecology ; Ekologi ; environmental DNA ; environmental monitoring ; Epidemics ; farms ; Fish ; Fresh water ; Fresh water ecosystems ; freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects ; glass fibre filter ; habitats ; Invertebrates ; Lakes ; Monitoring for management ; Nonnative species ; Other Veterinary Science ; Pacifastacus leniusculus ; Parks, reserves, wildlife conservation. Endangered species: population survey and restocking ; Pathogens ; plague ; Polymerase chain reaction ; Risk assessment ; rivers ; signal crayfish ; Spores ; Synecology ; Tissues ; Ultrafiltration ; Water filtration ; Water samples ; Zoologi ; Zoology ; zoospores</subject><ispartof>The Journal of applied ecology, 2014-04, Vol.51 (2), p.544-553</ispartof><rights>2014 British Ecological Society</rights><rights>2013 The Authors. Journal of Applied Ecology © 2013 British Ecological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Apr 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4708-5bbec6e9d0aa042b979bea147531899d1b026ea2a73a4015777d6e7c7b1482da3</citedby><cites>FETCH-LOGICAL-c4708-5bbec6e9d0aa042b979bea147531899d1b026ea2a73a4015777d6e7c7b1482da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24032385$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24032385$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28337240$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/56106$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Strand, David A</creatorcontrib><creatorcontrib>Jussila, Japo</creatorcontrib><creatorcontrib>Johnsen, Stein I</creatorcontrib><creatorcontrib>Viljamaa‐Dirks, Satu</creatorcontrib><creatorcontrib>Edsman, Lennart</creatorcontrib><creatorcontrib>Wiik‐Nielsen, Jannicke</creatorcontrib><creatorcontrib>Viljugrein, Hildegunn</creatorcontrib><creatorcontrib>Engdahl, Frederik</creatorcontrib><creatorcontrib>Vrålstad, Trude</creatorcontrib><creatorcontrib>Morgan, Eric</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Detection of crayfish plague spores in large freshwater systems</title><title>The Journal of applied ecology</title><description>Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundance in water systems that either host non‐indigenous crayfish species (NICS) or experience crayfish plague outbreaks. We tested two large‐scale filtering approaches to generate new insight about the abundance and dynamics of A. astaci spores in natural freshwater systems. Depth filtration (DF) and dead‐end ultrafiltration (DEUF) followed by A. astaci‐specific quantitative real‐time PCR was used to monitor A. astaci spores in large Nordic lakes hosting A. astaci‐positive Pacifastacus leniusculus, the dominating NICS in Northern Europe. Crayfish and water were sampled together to compare the A. astaci pathogen load in tissues, A. astaci prevalence in the population and the corresponding spore density in water. Samples were also obtained from a river where indigenous noble crayfish suffered from acute crayfish plague. The sensitivity of the filtering techniques was evaluated using simulation of random events. We detected A. astaci spores in lakes hosting NICS with both filtering methods but predominantly at concentrations below c. 1 spore L⁻¹. We found a significant positive association between A. astaci spore density in water, the A. astaci prevalence in the corresponding NICS population and the tissue pathogen load. Water from the river with the ongoing crayfish plague outbreak contained overall c. 43 times more spores L⁻¹ than water hosting NICS. Both filtering techniques proved suitable and equally sensitive, but simulations suggest that an optimization of the spore recovery could yield a 10‐fold increase in the DEUF‐method sensitivity. Synthesis and application. Our study demonstrates a low amount of pathogen spores are present in aquatic environments with non‐indigenous crayfish species, emphasizing the need for large‐volume filtering techniques for successful detection. The approach can be used for risk assessments and to improve conservation and management strategies of crayfish in Europe. Applications of this method include targeted disease surveillance, habitat evaluation prior to crayfish re‐stockings and water monitoring that can minimize disease transmission and spread, for example in crayfish farms and prior to fish movements for stocking purposes.</description><subject>alien species</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Annan veterinärmedicin</subject><subject>Aphanomyces astaci</subject><subject>Applied ecology</subject><subject>aquatic environment</subject><subject>Biochemistry and Molecular Biology</subject><subject>Biokemi och molekylärbiologi</subject><subject>Biological and medical sciences</subject><subject>Comparative analysis</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Crayfish</subject><subject>Crustacea</subject><subject>dead‐end ultrafiltration</subject><subject>depth filtration</subject><subject>disease surveillance</subject><subject>disease transmission</subject><subject>Ecology</subject><subject>Ekologi</subject><subject>environmental DNA</subject><subject>environmental monitoring</subject><subject>Epidemics</subject><subject>farms</subject><subject>Fish</subject><subject>Fresh water</subject><subject>Fresh water ecosystems</subject><subject>freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>glass fibre filter</subject><subject>habitats</subject><subject>Invertebrates</subject><subject>Lakes</subject><subject>Monitoring for management</subject><subject>Nonnative species</subject><subject>Other Veterinary Science</subject><subject>Pacifastacus leniusculus</subject><subject>Parks, reserves, wildlife conservation. Endangered species: population survey and restocking</subject><subject>Pathogens</subject><subject>plague</subject><subject>Polymerase chain reaction</subject><subject>Risk assessment</subject><subject>rivers</subject><subject>signal crayfish</subject><subject>Spores</subject><subject>Synecology</subject><subject>Tissues</subject><subject>Ultrafiltration</subject><subject>Water filtration</subject><subject>Water samples</subject><subject>Zoologi</subject><subject>Zoology</subject><subject>zoospores</subject><issn>0021-8901</issn><issn>1365-2664</issn><issn>1365-2664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQRiMEEkvhzAkRCXFMO2PHcXJCqJRCVamVoGdrkp1ss0rXwZNotf8eh7TLsb6M7HnzbH1OkvcIpxjXGerCZKoo8lNUCssXyep48jJZASjMygrwdfJGZAsAldF6lXz5xiM3Y-d3qW_TJtCh7eQ-HXraTJzK4ANL2u3SnsKG0zbu7vc0ckjlICM_yNvkVUu98LvHepLcfb_4ff4ju765_Hn-9TprcgtlZuqam4KrNRBBrurKVjUT5tZoLKtqjTWogkmR1ZQDGmvtumDb2BrzUq1JnyTZ4pU9D1PthtA9UDg4T52TfqopzMUJO1MgFJH_tPBD8H8mltFt_RR28YkODYK1BnGmzhaqCV4kcHv0Irg5VTdn6OYM3b9U48TnRy9JQ30baNd0chxTpdZW5RA5s3D7rufDc1p3dXvx5P-wzG1l9OG_NyqVLk3sf1z6LXlHmxDvvvulAPP5R1Eh6L_BDJhL</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Strand, David A</creator><creator>Jussila, Japo</creator><creator>Johnsen, Stein I</creator><creator>Viljamaa‐Dirks, Satu</creator><creator>Edsman, Lennart</creator><creator>Wiik‐Nielsen, Jannicke</creator><creator>Viljugrein, Hildegunn</creator><creator>Engdahl, Frederik</creator><creator>Vrålstad, Trude</creator><creator>Morgan, Eric</creator><general>John Wiley & Sons Ltd</general><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>201404</creationdate><title>Detection of crayfish plague spores in large freshwater systems</title><author>Strand, David A ; Jussila, Japo ; Johnsen, Stein I ; Viljamaa‐Dirks, Satu ; Edsman, Lennart ; Wiik‐Nielsen, Jannicke ; Viljugrein, Hildegunn ; Engdahl, Frederik ; Vrålstad, Trude ; Morgan, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4708-5bbec6e9d0aa042b979bea147531899d1b026ea2a73a4015777d6e7c7b1482da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alien species</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Annan veterinärmedicin</topic><topic>Aphanomyces astaci</topic><topic>Applied ecology</topic><topic>aquatic environment</topic><topic>Biochemistry and Molecular Biology</topic><topic>Biokemi och molekylärbiologi</topic><topic>Biological and medical sciences</topic><topic>Comparative analysis</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Crayfish</topic><topic>Crustacea</topic><topic>dead‐end ultrafiltration</topic><topic>depth filtration</topic><topic>disease surveillance</topic><topic>disease transmission</topic><topic>Ecology</topic><topic>Ekologi</topic><topic>environmental DNA</topic><topic>environmental monitoring</topic><topic>Epidemics</topic><topic>farms</topic><topic>Fish</topic><topic>Fresh water</topic><topic>Fresh water ecosystems</topic><topic>freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>glass fibre filter</topic><topic>habitats</topic><topic>Invertebrates</topic><topic>Lakes</topic><topic>Monitoring for management</topic><topic>Nonnative species</topic><topic>Other Veterinary Science</topic><topic>Pacifastacus leniusculus</topic><topic>Parks, reserves, wildlife conservation. Endangered species: population survey and restocking</topic><topic>Pathogens</topic><topic>plague</topic><topic>Polymerase chain reaction</topic><topic>Risk assessment</topic><topic>rivers</topic><topic>signal crayfish</topic><topic>Spores</topic><topic>Synecology</topic><topic>Tissues</topic><topic>Ultrafiltration</topic><topic>Water filtration</topic><topic>Water samples</topic><topic>Zoologi</topic><topic>Zoology</topic><topic>zoospores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strand, David A</creatorcontrib><creatorcontrib>Jussila, Japo</creatorcontrib><creatorcontrib>Johnsen, Stein I</creatorcontrib><creatorcontrib>Viljamaa‐Dirks, Satu</creatorcontrib><creatorcontrib>Edsman, Lennart</creatorcontrib><creatorcontrib>Wiik‐Nielsen, Jannicke</creatorcontrib><creatorcontrib>Viljugrein, Hildegunn</creatorcontrib><creatorcontrib>Engdahl, Frederik</creatorcontrib><creatorcontrib>Vrålstad, Trude</creatorcontrib><creatorcontrib>Morgan, Eric</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>The Journal of applied ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strand, David A</au><au>Jussila, Japo</au><au>Johnsen, Stein I</au><au>Viljamaa‐Dirks, Satu</au><au>Edsman, Lennart</au><au>Wiik‐Nielsen, Jannicke</au><au>Viljugrein, Hildegunn</au><au>Engdahl, Frederik</au><au>Vrålstad, Trude</au><au>Morgan, Eric</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of crayfish plague spores in large freshwater systems</atitle><jtitle>The Journal of applied ecology</jtitle><date>2014-04</date><risdate>2014</risdate><volume>51</volume><issue>2</issue><spage>544</spage><epage>553</epage><pages>544-553</pages><issn>0021-8901</issn><issn>1365-2664</issn><eissn>1365-2664</eissn><coden>JAPEAI</coden><abstract>Indigenous European freshwater crayfish (ICS) are threatened due to invasive North American freshwater crayfish that are natural carriers of Aphanomyces astaci which causes crayfish plague. Infectious A. astaci zoospores are released from carrier crayfish, but little is known about the spore abundance in water systems that either host non‐indigenous crayfish species (NICS) or experience crayfish plague outbreaks. We tested two large‐scale filtering approaches to generate new insight about the abundance and dynamics of A. astaci spores in natural freshwater systems. Depth filtration (DF) and dead‐end ultrafiltration (DEUF) followed by A. astaci‐specific quantitative real‐time PCR was used to monitor A. astaci spores in large Nordic lakes hosting A. astaci‐positive Pacifastacus leniusculus, the dominating NICS in Northern Europe. Crayfish and water were sampled together to compare the A. astaci pathogen load in tissues, A. astaci prevalence in the population and the corresponding spore density in water. Samples were also obtained from a river where indigenous noble crayfish suffered from acute crayfish plague. The sensitivity of the filtering techniques was evaluated using simulation of random events. We detected A. astaci spores in lakes hosting NICS with both filtering methods but predominantly at concentrations below c. 1 spore L⁻¹. We found a significant positive association between A. astaci spore density in water, the A. astaci prevalence in the corresponding NICS population and the tissue pathogen load. Water from the river with the ongoing crayfish plague outbreak contained overall c. 43 times more spores L⁻¹ than water hosting NICS. Both filtering techniques proved suitable and equally sensitive, but simulations suggest that an optimization of the spore recovery could yield a 10‐fold increase in the DEUF‐method sensitivity. Synthesis and application. Our study demonstrates a low amount of pathogen spores are present in aquatic environments with non‐indigenous crayfish species, emphasizing the need for large‐volume filtering techniques for successful detection. The approach can be used for risk assessments and to improve conservation and management strategies of crayfish in Europe. Applications of this method include targeted disease surveillance, habitat evaluation prior to crayfish re‐stockings and water monitoring that can minimize disease transmission and spread, for example in crayfish farms and prior to fish movements for stocking purposes.</abstract><cop>Oxford</cop><pub>John Wiley & Sons Ltd</pub><doi>10.1111/1365-2664.12218</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8901 |
ispartof | The Journal of applied ecology, 2014-04, Vol.51 (2), p.544-553 |
issn | 0021-8901 1365-2664 1365-2664 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_56106 |
source | Jstor Complete Legacy; Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | alien species Animal and plant ecology Animal, plant and microbial ecology Annan veterinärmedicin Aphanomyces astaci Applied ecology aquatic environment Biochemistry and Molecular Biology Biokemi och molekylärbiologi Biological and medical sciences Comparative analysis Conservation, protection and management of environment and wildlife Crayfish Crustacea dead‐end ultrafiltration depth filtration disease surveillance disease transmission Ecology Ekologi environmental DNA environmental monitoring Epidemics farms Fish Fresh water Fresh water ecosystems freshwater Fundamental and applied biological sciences. Psychology General aspects glass fibre filter habitats Invertebrates Lakes Monitoring for management Nonnative species Other Veterinary Science Pacifastacus leniusculus Parks, reserves, wildlife conservation. Endangered species: population survey and restocking Pathogens plague Polymerase chain reaction Risk assessment rivers signal crayfish Spores Synecology Tissues Ultrafiltration Water filtration Water samples Zoologi Zoology zoospores |
title | Detection of crayfish plague spores in large freshwater systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20crayfish%20plague%20spores%20in%20large%20freshwater%20systems&rft.jtitle=The%20Journal%20of%20applied%20ecology&rft.au=Strand,%20David%20A&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2014-04&rft.volume=51&rft.issue=2&rft.spage=544&rft.epage=553&rft.pages=544-553&rft.issn=0021-8901&rft.eissn=1365-2664&rft.coden=JAPEAI&rft_id=info:doi/10.1111/1365-2664.12218&rft_dat=%3Cjstor_swepu%3E24032385%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510775116&rft_id=info:pmid/&rft_jstor_id=24032385&rfr_iscdi=true |