Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment
Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that...
Gespeichert in:
Veröffentlicht in: | Journal of contaminant hydrology 2013-11, Vol.154, p.70-77 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | |
container_start_page | 70 |
container_title | Journal of contaminant hydrology |
container_volume | 154 |
creator | Herrmann, Inga Jourak, Amir Gustafsson, Jon Petter Hedström, Annelie Lundström, T. Staffan Viklander, Maria |
description | Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that could lead to the formation of PO4 compounds, is required to evaluate the potential utility of candidate sorbents. Models based on data obtained from laboratory-scale experiments with columns of selected materials can be valuable for acquiring such understanding. Thus, in this study the transport and removal of PO4 in experiments with a laboratory-scale column filled with a commercial silicate-based sorbent were modeled, using the hydro-geochemical transport code PHREEQC. The resulting models, that incorporated the dissolution of calcite, kinetic constrains for the dissolution of calcium oxide (CaO) and wollastonite (CaSiO3), and the precipitation of amorphous tricalcium phosphate, Ca3(PO4)2, successfully simulated the removal of PO4 observed in the experiments.
Modeled calcium, modeled PO4 and mean (n=2) measured PO4 concentrations (a) and modeled and mean measured pH (b) in the filter effluent vs. bed volumes at a loading rate of 97±3Lm−2d−1. [Display omitted]
•Removal of PO4 in filters for on-site wastewater treatment was modeled.•The hydro-geochemical transport code PHREEQC was used.•The models could successfully simulate PO4 removal measured in laboratory.•CaO, wollastonite and calcite were the phases dissolved from the material.•The only precipitated Ca–P compound suggested by the models was ATCP (Ca3(PO4)2). |
doi_str_mv | 10.1016/j.jconhyd.2013.08.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_51208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169772213001253</els_id><sourcerecordid>1443428810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ddc95b7e57a42648487b3c07d495ce99df19cbf70872dbcc18528cce9909f4893</originalsourceid><addsrcrecordid>eNqFkk2P1DAMhiMEYoeFnwDKkQMtSZpOkhNaLZ_SIi7ANUoTd5uhbUqS7mhP_HUymmFuwMmS_div9doIPaekpoRuX-_qnQ3zcO9qRmhTE1kTIh6gDZWiqbaEqIdoUzhVCcHYBXqS0o4UQhL5GF0wThQRjdigX5-Dg9HPt3gZQloGkwHnaOa0hJixmR2OMIU7M2I_Y4NtmBZjM-7A4d6PYwl7n4dSmfwM0YxVZ1JJphA7mDPuQ8QuTJCyt3hvUoZ9UYhFAkyeCvEUPerNmODZKV6ib-_ffb3-WN18-fDp-uqmslzIXDlnVdsJaIXhbMsll6JrLBGOq9aCUq6nyna9IFIw11lLZcukPVSI6rlUzSWqjnPTHpa100v0k4n3Ohiv07h2Jh6CTqBbyogs_Ku_8m_99ysd4q0e86opK_v8c_wZ_5EHTZstZYd1Xh75JYafa7FHTz5ZGEczQ1iTppw3nElJSUHbI2pjSClCfx5OiT68gt7p0yvowytoInU5dOl7cZJYuwncuevP7Qvw5ghA8f3OQ3HAepgtOB_BZu2C_4_Eb7r6y5Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443428810</pqid></control><display><type>article</type><title>Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Herrmann, Inga ; Jourak, Amir ; Gustafsson, Jon Petter ; Hedström, Annelie ; Lundström, T. Staffan ; Viklander, Maria</creator><creatorcontrib>Herrmann, Inga ; Jourak, Amir ; Gustafsson, Jon Petter ; Hedström, Annelie ; Lundström, T. Staffan ; Viklander, Maria ; Sveriges lantbruksuniversitet</creatorcontrib><description>Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that could lead to the formation of PO4 compounds, is required to evaluate the potential utility of candidate sorbents. Models based on data obtained from laboratory-scale experiments with columns of selected materials can be valuable for acquiring such understanding. Thus, in this study the transport and removal of PO4 in experiments with a laboratory-scale column filled with a commercial silicate-based sorbent were modeled, using the hydro-geochemical transport code PHREEQC. The resulting models, that incorporated the dissolution of calcite, kinetic constrains for the dissolution of calcium oxide (CaO) and wollastonite (CaSiO3), and the precipitation of amorphous tricalcium phosphate, Ca3(PO4)2, successfully simulated the removal of PO4 observed in the experiments.
Modeled calcium, modeled PO4 and mean (n=2) measured PO4 concentrations (a) and modeled and mean measured pH (b) in the filter effluent vs. bed volumes at a loading rate of 97±3Lm−2d−1. [Display omitted]
•Removal of PO4 in filters for on-site wastewater treatment was modeled.•The hydro-geochemical transport code PHREEQC was used.•The models could successfully simulate PO4 removal measured in laboratory.•CaO, wollastonite and calcite were the phases dissolved from the material.•The only precipitated Ca–P compound suggested by the models was ATCP (Ca3(PO4)2).</description><identifier>ISSN: 0169-7722</identifier><identifier>ISSN: 1873-6009</identifier><identifier>EISSN: 1873-6009</identifier><identifier>DOI: 10.1016/j.jconhyd.2013.08.007</identifier><identifier>PMID: 24090737</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adsorption ; Annan naturresursteknik ; Calcium Carbonate - chemistry ; Calcium Compounds - chemistry ; Constructed wetlands ; Filtration ; Fluid Mechanics ; Geochemistry ; Geokemi ; Models, Theoretical ; On-site wastewater treatment ; Other Environmental Engineering ; Oxides - chemistry ; Phosphates - chemistry ; Phosphorus ; PHREEQC ; Reactive transport modeling ; Silicates - chemistry ; Silicon Dioxide - chemistry ; Strömningslära ; Urban Water Engineering ; VA-teknik ; Waste Disposal, Fluid ; Waste Water - chemistry ; Water Pollutants, Chemical - chemistry</subject><ispartof>Journal of contaminant hydrology, 2013-11, Vol.154, p.70-77</ispartof><rights>2013 Elsevier B.V.</rights><rights>2013. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-ddc95b7e57a42648487b3c07d495ce99df19cbf70872dbcc18528cce9909f4893</citedby><cites>FETCH-LOGICAL-c478t-ddc95b7e57a42648487b3c07d495ce99df19cbf70872dbcc18528cce9909f4893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169772213001253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24090737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136129$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-12264$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/51208$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrmann, Inga</creatorcontrib><creatorcontrib>Jourak, Amir</creatorcontrib><creatorcontrib>Gustafsson, Jon Petter</creatorcontrib><creatorcontrib>Hedström, Annelie</creatorcontrib><creatorcontrib>Lundström, T. Staffan</creatorcontrib><creatorcontrib>Viklander, Maria</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment</title><title>Journal of contaminant hydrology</title><addtitle>J Contam Hydrol</addtitle><description>Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that could lead to the formation of PO4 compounds, is required to evaluate the potential utility of candidate sorbents. Models based on data obtained from laboratory-scale experiments with columns of selected materials can be valuable for acquiring such understanding. Thus, in this study the transport and removal of PO4 in experiments with a laboratory-scale column filled with a commercial silicate-based sorbent were modeled, using the hydro-geochemical transport code PHREEQC. The resulting models, that incorporated the dissolution of calcite, kinetic constrains for the dissolution of calcium oxide (CaO) and wollastonite (CaSiO3), and the precipitation of amorphous tricalcium phosphate, Ca3(PO4)2, successfully simulated the removal of PO4 observed in the experiments.
Modeled calcium, modeled PO4 and mean (n=2) measured PO4 concentrations (a) and modeled and mean measured pH (b) in the filter effluent vs. bed volumes at a loading rate of 97±3Lm−2d−1. [Display omitted]
•Removal of PO4 in filters for on-site wastewater treatment was modeled.•The hydro-geochemical transport code PHREEQC was used.•The models could successfully simulate PO4 removal measured in laboratory.•CaO, wollastonite and calcite were the phases dissolved from the material.•The only precipitated Ca–P compound suggested by the models was ATCP (Ca3(PO4)2).</description><subject>Adsorption</subject><subject>Annan naturresursteknik</subject><subject>Calcium Carbonate - chemistry</subject><subject>Calcium Compounds - chemistry</subject><subject>Constructed wetlands</subject><subject>Filtration</subject><subject>Fluid Mechanics</subject><subject>Geochemistry</subject><subject>Geokemi</subject><subject>Models, Theoretical</subject><subject>On-site wastewater treatment</subject><subject>Other Environmental Engineering</subject><subject>Oxides - chemistry</subject><subject>Phosphates - chemistry</subject><subject>Phosphorus</subject><subject>PHREEQC</subject><subject>Reactive transport modeling</subject><subject>Silicates - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><subject>Strömningslära</subject><subject>Urban Water Engineering</subject><subject>VA-teknik</subject><subject>Waste Disposal, Fluid</subject><subject>Waste Water - chemistry</subject><subject>Water Pollutants, Chemical - chemistry</subject><issn>0169-7722</issn><issn>1873-6009</issn><issn>1873-6009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2P1DAMhiMEYoeFnwDKkQMtSZpOkhNaLZ_SIi7ANUoTd5uhbUqS7mhP_HUymmFuwMmS_div9doIPaekpoRuX-_qnQ3zcO9qRmhTE1kTIh6gDZWiqbaEqIdoUzhVCcHYBXqS0o4UQhL5GF0wThQRjdigX5-Dg9HPt3gZQloGkwHnaOa0hJixmR2OMIU7M2I_Y4NtmBZjM-7A4d6PYwl7n4dSmfwM0YxVZ1JJphA7mDPuQ8QuTJCyt3hvUoZ9UYhFAkyeCvEUPerNmODZKV6ib-_ffb3-WN18-fDp-uqmslzIXDlnVdsJaIXhbMsll6JrLBGOq9aCUq6nyna9IFIw11lLZcukPVSI6rlUzSWqjnPTHpa100v0k4n3Ohiv07h2Jh6CTqBbyogs_Ku_8m_99ysd4q0e86opK_v8c_wZ_5EHTZstZYd1Xh75JYafa7FHTz5ZGEczQ1iTppw3nElJSUHbI2pjSClCfx5OiT68gt7p0yvowytoInU5dOl7cZJYuwncuevP7Qvw5ghA8f3OQ3HAepgtOB_BZu2C_4_Eb7r6y5Y</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Herrmann, Inga</creator><creator>Jourak, Amir</creator><creator>Gustafsson, Jon Petter</creator><creator>Hedström, Annelie</creator><creator>Lundström, T. Staffan</creator><creator>Viklander, Maria</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20131101</creationdate><title>Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment</title><author>Herrmann, Inga ; Jourak, Amir ; Gustafsson, Jon Petter ; Hedström, Annelie ; Lundström, T. Staffan ; Viklander, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ddc95b7e57a42648487b3c07d495ce99df19cbf70872dbcc18528cce9909f4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Annan naturresursteknik</topic><topic>Calcium Carbonate - chemistry</topic><topic>Calcium Compounds - chemistry</topic><topic>Constructed wetlands</topic><topic>Filtration</topic><topic>Fluid Mechanics</topic><topic>Geochemistry</topic><topic>Geokemi</topic><topic>Models, Theoretical</topic><topic>On-site wastewater treatment</topic><topic>Other Environmental Engineering</topic><topic>Oxides - chemistry</topic><topic>Phosphates - chemistry</topic><topic>Phosphorus</topic><topic>PHREEQC</topic><topic>Reactive transport modeling</topic><topic>Silicates - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><topic>Strömningslära</topic><topic>Urban Water Engineering</topic><topic>VA-teknik</topic><topic>Waste Disposal, Fluid</topic><topic>Waste Water - chemistry</topic><topic>Water Pollutants, Chemical - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrmann, Inga</creatorcontrib><creatorcontrib>Jourak, Amir</creatorcontrib><creatorcontrib>Gustafsson, Jon Petter</creatorcontrib><creatorcontrib>Hedström, Annelie</creatorcontrib><creatorcontrib>Lundström, T. Staffan</creatorcontrib><creatorcontrib>Viklander, Maria</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of contaminant hydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrmann, Inga</au><au>Jourak, Amir</au><au>Gustafsson, Jon Petter</au><au>Hedström, Annelie</au><au>Lundström, T. Staffan</au><au>Viklander, Maria</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment</atitle><jtitle>Journal of contaminant hydrology</jtitle><addtitle>J Contam Hydrol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>154</volume><spage>70</spage><epage>77</epage><pages>70-77</pages><issn>0169-7722</issn><issn>1873-6009</issn><eissn>1873-6009</eissn><abstract>Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that could lead to the formation of PO4 compounds, is required to evaluate the potential utility of candidate sorbents. Models based on data obtained from laboratory-scale experiments with columns of selected materials can be valuable for acquiring such understanding. Thus, in this study the transport and removal of PO4 in experiments with a laboratory-scale column filled with a commercial silicate-based sorbent were modeled, using the hydro-geochemical transport code PHREEQC. The resulting models, that incorporated the dissolution of calcite, kinetic constrains for the dissolution of calcium oxide (CaO) and wollastonite (CaSiO3), and the precipitation of amorphous tricalcium phosphate, Ca3(PO4)2, successfully simulated the removal of PO4 observed in the experiments.
Modeled calcium, modeled PO4 and mean (n=2) measured PO4 concentrations (a) and modeled and mean measured pH (b) in the filter effluent vs. bed volumes at a loading rate of 97±3Lm−2d−1. [Display omitted]
•Removal of PO4 in filters for on-site wastewater treatment was modeled.•The hydro-geochemical transport code PHREEQC was used.•The models could successfully simulate PO4 removal measured in laboratory.•CaO, wollastonite and calcite were the phases dissolved from the material.•The only precipitated Ca–P compound suggested by the models was ATCP (Ca3(PO4)2).</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24090737</pmid><doi>10.1016/j.jconhyd.2013.08.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-7722 |
ispartof | Journal of contaminant hydrology, 2013-11, Vol.154, p.70-77 |
issn | 0169-7722 1873-6009 1873-6009 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_51208 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adsorption Annan naturresursteknik Calcium Carbonate - chemistry Calcium Compounds - chemistry Constructed wetlands Filtration Fluid Mechanics Geochemistry Geokemi Models, Theoretical On-site wastewater treatment Other Environmental Engineering Oxides - chemistry Phosphates - chemistry Phosphorus PHREEQC Reactive transport modeling Silicates - chemistry Silicon Dioxide - chemistry Strömningslära Urban Water Engineering VA-teknik Waste Disposal, Fluid Waste Water - chemistry Water Pollutants, Chemical - chemistry |
title | Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20phosphate%20transport%20and%20removal%20in%20a%20compact%20bed%20filled%20with%20a%20mineral-based%20sorbent%20for%20domestic%20wastewater%20treatment&rft.jtitle=Journal%20of%20contaminant%20hydrology&rft.au=Herrmann,%20Inga&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2013-11-01&rft.volume=154&rft.spage=70&rft.epage=77&rft.pages=70-77&rft.issn=0169-7722&rft.eissn=1873-6009&rft_id=info:doi/10.1016/j.jconhyd.2013.08.007&rft_dat=%3Cproquest_swepu%3E1443428810%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443428810&rft_id=info:pmid/24090737&rft_els_id=S0169772213001253&rfr_iscdi=true |