Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment

Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contaminant hydrology 2013-11, Vol.154, p.70-77
Hauptverfasser: Herrmann, Inga, Jourak, Amir, Gustafsson, Jon Petter, Hedström, Annelie, Lundström, T. Staffan, Viklander, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 70
container_title Journal of contaminant hydrology
container_volume 154
creator Herrmann, Inga
Jourak, Amir
Gustafsson, Jon Petter
Hedström, Annelie
Lundström, T. Staffan
Viklander, Maria
description Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that could lead to the formation of PO4 compounds, is required to evaluate the potential utility of candidate sorbents. Models based on data obtained from laboratory-scale experiments with columns of selected materials can be valuable for acquiring such understanding. Thus, in this study the transport and removal of PO4 in experiments with a laboratory-scale column filled with a commercial silicate-based sorbent were modeled, using the hydro-geochemical transport code PHREEQC. The resulting models, that incorporated the dissolution of calcite, kinetic constrains for the dissolution of calcium oxide (CaO) and wollastonite (CaSiO3), and the precipitation of amorphous tricalcium phosphate, Ca3(PO4)2, successfully simulated the removal of PO4 observed in the experiments. Modeled calcium, modeled PO4 and mean (n=2) measured PO4 concentrations (a) and modeled and mean measured pH (b) in the filter effluent vs. bed volumes at a loading rate of 97±3Lm−2d−1. [Display omitted] •Removal of PO4 in filters for on-site wastewater treatment was modeled.•The hydro-geochemical transport code PHREEQC was used.•The models could successfully simulate PO4 removal measured in laboratory.•CaO, wollastonite and calcite were the phases dissolved from the material.•The only precipitated Ca–P compound suggested by the models was ATCP (Ca3(PO4)2).
doi_str_mv 10.1016/j.jconhyd.2013.08.007
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_51208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169772213001253</els_id><sourcerecordid>1443428810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ddc95b7e57a42648487b3c07d495ce99df19cbf70872dbcc18528cce9909f4893</originalsourceid><addsrcrecordid>eNqFkk2P1DAMhiMEYoeFnwDKkQMtSZpOkhNaLZ_SIi7ANUoTd5uhbUqS7mhP_HUymmFuwMmS_div9doIPaekpoRuX-_qnQ3zcO9qRmhTE1kTIh6gDZWiqbaEqIdoUzhVCcHYBXqS0o4UQhL5GF0wThQRjdigX5-Dg9HPt3gZQloGkwHnaOa0hJixmR2OMIU7M2I_Y4NtmBZjM-7A4d6PYwl7n4dSmfwM0YxVZ1JJphA7mDPuQ8QuTJCyt3hvUoZ9UYhFAkyeCvEUPerNmODZKV6ib-_ffb3-WN18-fDp-uqmslzIXDlnVdsJaIXhbMsll6JrLBGOq9aCUq6nyna9IFIw11lLZcukPVSI6rlUzSWqjnPTHpa100v0k4n3Ohiv07h2Jh6CTqBbyogs_Ku_8m_99ysd4q0e86opK_v8c_wZ_5EHTZstZYd1Xh75JYafa7FHTz5ZGEczQ1iTppw3nElJSUHbI2pjSClCfx5OiT68gt7p0yvowytoInU5dOl7cZJYuwncuevP7Qvw5ghA8f3OQ3HAepgtOB_BZu2C_4_Eb7r6y5Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443428810</pqid></control><display><type>article</type><title>Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Herrmann, Inga ; Jourak, Amir ; Gustafsson, Jon Petter ; Hedström, Annelie ; Lundström, T. Staffan ; Viklander, Maria</creator><creatorcontrib>Herrmann, Inga ; Jourak, Amir ; Gustafsson, Jon Petter ; Hedström, Annelie ; Lundström, T. Staffan ; Viklander, Maria ; Sveriges lantbruksuniversitet</creatorcontrib><description>Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that could lead to the formation of PO4 compounds, is required to evaluate the potential utility of candidate sorbents. Models based on data obtained from laboratory-scale experiments with columns of selected materials can be valuable for acquiring such understanding. Thus, in this study the transport and removal of PO4 in experiments with a laboratory-scale column filled with a commercial silicate-based sorbent were modeled, using the hydro-geochemical transport code PHREEQC. The resulting models, that incorporated the dissolution of calcite, kinetic constrains for the dissolution of calcium oxide (CaO) and wollastonite (CaSiO3), and the precipitation of amorphous tricalcium phosphate, Ca3(PO4)2, successfully simulated the removal of PO4 observed in the experiments. Modeled calcium, modeled PO4 and mean (n=2) measured PO4 concentrations (a) and modeled and mean measured pH (b) in the filter effluent vs. bed volumes at a loading rate of 97±3Lm−2d−1. [Display omitted] •Removal of PO4 in filters for on-site wastewater treatment was modeled.•The hydro-geochemical transport code PHREEQC was used.•The models could successfully simulate PO4 removal measured in laboratory.•CaO, wollastonite and calcite were the phases dissolved from the material.•The only precipitated Ca–P compound suggested by the models was ATCP (Ca3(PO4)2).</description><identifier>ISSN: 0169-7722</identifier><identifier>ISSN: 1873-6009</identifier><identifier>EISSN: 1873-6009</identifier><identifier>DOI: 10.1016/j.jconhyd.2013.08.007</identifier><identifier>PMID: 24090737</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adsorption ; Annan naturresursteknik ; Calcium Carbonate - chemistry ; Calcium Compounds - chemistry ; Constructed wetlands ; Filtration ; Fluid Mechanics ; Geochemistry ; Geokemi ; Models, Theoretical ; On-site wastewater treatment ; Other Environmental Engineering ; Oxides - chemistry ; Phosphates - chemistry ; Phosphorus ; PHREEQC ; Reactive transport modeling ; Silicates - chemistry ; Silicon Dioxide - chemistry ; Strömningslära ; Urban Water Engineering ; VA-teknik ; Waste Disposal, Fluid ; Waste Water - chemistry ; Water Pollutants, Chemical - chemistry</subject><ispartof>Journal of contaminant hydrology, 2013-11, Vol.154, p.70-77</ispartof><rights>2013 Elsevier B.V.</rights><rights>2013. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-ddc95b7e57a42648487b3c07d495ce99df19cbf70872dbcc18528cce9909f4893</citedby><cites>FETCH-LOGICAL-c478t-ddc95b7e57a42648487b3c07d495ce99df19cbf70872dbcc18528cce9909f4893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169772213001253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24090737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136129$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-12264$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/51208$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrmann, Inga</creatorcontrib><creatorcontrib>Jourak, Amir</creatorcontrib><creatorcontrib>Gustafsson, Jon Petter</creatorcontrib><creatorcontrib>Hedström, Annelie</creatorcontrib><creatorcontrib>Lundström, T. Staffan</creatorcontrib><creatorcontrib>Viklander, Maria</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment</title><title>Journal of contaminant hydrology</title><addtitle>J Contam Hydrol</addtitle><description>Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that could lead to the formation of PO4 compounds, is required to evaluate the potential utility of candidate sorbents. Models based on data obtained from laboratory-scale experiments with columns of selected materials can be valuable for acquiring such understanding. Thus, in this study the transport and removal of PO4 in experiments with a laboratory-scale column filled with a commercial silicate-based sorbent were modeled, using the hydro-geochemical transport code PHREEQC. The resulting models, that incorporated the dissolution of calcite, kinetic constrains for the dissolution of calcium oxide (CaO) and wollastonite (CaSiO3), and the precipitation of amorphous tricalcium phosphate, Ca3(PO4)2, successfully simulated the removal of PO4 observed in the experiments. Modeled calcium, modeled PO4 and mean (n=2) measured PO4 concentrations (a) and modeled and mean measured pH (b) in the filter effluent vs. bed volumes at a loading rate of 97±3Lm−2d−1. [Display omitted] •Removal of PO4 in filters for on-site wastewater treatment was modeled.•The hydro-geochemical transport code PHREEQC was used.•The models could successfully simulate PO4 removal measured in laboratory.•CaO, wollastonite and calcite were the phases dissolved from the material.•The only precipitated Ca–P compound suggested by the models was ATCP (Ca3(PO4)2).</description><subject>Adsorption</subject><subject>Annan naturresursteknik</subject><subject>Calcium Carbonate - chemistry</subject><subject>Calcium Compounds - chemistry</subject><subject>Constructed wetlands</subject><subject>Filtration</subject><subject>Fluid Mechanics</subject><subject>Geochemistry</subject><subject>Geokemi</subject><subject>Models, Theoretical</subject><subject>On-site wastewater treatment</subject><subject>Other Environmental Engineering</subject><subject>Oxides - chemistry</subject><subject>Phosphates - chemistry</subject><subject>Phosphorus</subject><subject>PHREEQC</subject><subject>Reactive transport modeling</subject><subject>Silicates - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><subject>Strömningslära</subject><subject>Urban Water Engineering</subject><subject>VA-teknik</subject><subject>Waste Disposal, Fluid</subject><subject>Waste Water - chemistry</subject><subject>Water Pollutants, Chemical - chemistry</subject><issn>0169-7722</issn><issn>1873-6009</issn><issn>1873-6009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2P1DAMhiMEYoeFnwDKkQMtSZpOkhNaLZ_SIi7ANUoTd5uhbUqS7mhP_HUymmFuwMmS_div9doIPaekpoRuX-_qnQ3zcO9qRmhTE1kTIh6gDZWiqbaEqIdoUzhVCcHYBXqS0o4UQhL5GF0wThQRjdigX5-Dg9HPt3gZQloGkwHnaOa0hJixmR2OMIU7M2I_Y4NtmBZjM-7A4d6PYwl7n4dSmfwM0YxVZ1JJphA7mDPuQ8QuTJCyt3hvUoZ9UYhFAkyeCvEUPerNmODZKV6ib-_ffb3-WN18-fDp-uqmslzIXDlnVdsJaIXhbMsll6JrLBGOq9aCUq6nyna9IFIw11lLZcukPVSI6rlUzSWqjnPTHpa100v0k4n3Ohiv07h2Jh6CTqBbyogs_Ku_8m_99ysd4q0e86opK_v8c_wZ_5EHTZstZYd1Xh75JYafa7FHTz5ZGEczQ1iTppw3nElJSUHbI2pjSClCfx5OiT68gt7p0yvowytoInU5dOl7cZJYuwncuevP7Qvw5ghA8f3OQ3HAepgtOB_BZu2C_4_Eb7r6y5Y</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Herrmann, Inga</creator><creator>Jourak, Amir</creator><creator>Gustafsson, Jon Petter</creator><creator>Hedström, Annelie</creator><creator>Lundström, T. Staffan</creator><creator>Viklander, Maria</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20131101</creationdate><title>Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment</title><author>Herrmann, Inga ; Jourak, Amir ; Gustafsson, Jon Petter ; Hedström, Annelie ; Lundström, T. Staffan ; Viklander, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ddc95b7e57a42648487b3c07d495ce99df19cbf70872dbcc18528cce9909f4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Annan naturresursteknik</topic><topic>Calcium Carbonate - chemistry</topic><topic>Calcium Compounds - chemistry</topic><topic>Constructed wetlands</topic><topic>Filtration</topic><topic>Fluid Mechanics</topic><topic>Geochemistry</topic><topic>Geokemi</topic><topic>Models, Theoretical</topic><topic>On-site wastewater treatment</topic><topic>Other Environmental Engineering</topic><topic>Oxides - chemistry</topic><topic>Phosphates - chemistry</topic><topic>Phosphorus</topic><topic>PHREEQC</topic><topic>Reactive transport modeling</topic><topic>Silicates - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><topic>Strömningslära</topic><topic>Urban Water Engineering</topic><topic>VA-teknik</topic><topic>Waste Disposal, Fluid</topic><topic>Waste Water - chemistry</topic><topic>Water Pollutants, Chemical - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrmann, Inga</creatorcontrib><creatorcontrib>Jourak, Amir</creatorcontrib><creatorcontrib>Gustafsson, Jon Petter</creatorcontrib><creatorcontrib>Hedström, Annelie</creatorcontrib><creatorcontrib>Lundström, T. Staffan</creatorcontrib><creatorcontrib>Viklander, Maria</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of contaminant hydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrmann, Inga</au><au>Jourak, Amir</au><au>Gustafsson, Jon Petter</au><au>Hedström, Annelie</au><au>Lundström, T. Staffan</au><au>Viklander, Maria</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment</atitle><jtitle>Journal of contaminant hydrology</jtitle><addtitle>J Contam Hydrol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>154</volume><spage>70</spage><epage>77</epage><pages>70-77</pages><issn>0169-7722</issn><issn>1873-6009</issn><eissn>1873-6009</eissn><abstract>Phosphorus filter units containing mineral-based sorbents with a high phosphate (PO4) binding capacity have been shown to be appropriate for removing PO4 in the treatment of domestic wastewater in on-site facilities. However, a better understanding of their PO4 removal mechanisms, and reactions that could lead to the formation of PO4 compounds, is required to evaluate the potential utility of candidate sorbents. Models based on data obtained from laboratory-scale experiments with columns of selected materials can be valuable for acquiring such understanding. Thus, in this study the transport and removal of PO4 in experiments with a laboratory-scale column filled with a commercial silicate-based sorbent were modeled, using the hydro-geochemical transport code PHREEQC. The resulting models, that incorporated the dissolution of calcite, kinetic constrains for the dissolution of calcium oxide (CaO) and wollastonite (CaSiO3), and the precipitation of amorphous tricalcium phosphate, Ca3(PO4)2, successfully simulated the removal of PO4 observed in the experiments. Modeled calcium, modeled PO4 and mean (n=2) measured PO4 concentrations (a) and modeled and mean measured pH (b) in the filter effluent vs. bed volumes at a loading rate of 97±3Lm−2d−1. [Display omitted] •Removal of PO4 in filters for on-site wastewater treatment was modeled.•The hydro-geochemical transport code PHREEQC was used.•The models could successfully simulate PO4 removal measured in laboratory.•CaO, wollastonite and calcite were the phases dissolved from the material.•The only precipitated Ca–P compound suggested by the models was ATCP (Ca3(PO4)2).</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24090737</pmid><doi>10.1016/j.jconhyd.2013.08.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-7722
ispartof Journal of contaminant hydrology, 2013-11, Vol.154, p.70-77
issn 0169-7722
1873-6009
1873-6009
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_51208
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adsorption
Annan naturresursteknik
Calcium Carbonate - chemistry
Calcium Compounds - chemistry
Constructed wetlands
Filtration
Fluid Mechanics
Geochemistry
Geokemi
Models, Theoretical
On-site wastewater treatment
Other Environmental Engineering
Oxides - chemistry
Phosphates - chemistry
Phosphorus
PHREEQC
Reactive transport modeling
Silicates - chemistry
Silicon Dioxide - chemistry
Strömningslära
Urban Water Engineering
VA-teknik
Waste Disposal, Fluid
Waste Water - chemistry
Water Pollutants, Chemical - chemistry
title Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20phosphate%20transport%20and%20removal%20in%20a%20compact%20bed%20filled%20with%20a%20mineral-based%20sorbent%20for%20domestic%20wastewater%20treatment&rft.jtitle=Journal%20of%20contaminant%20hydrology&rft.au=Herrmann,%20Inga&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2013-11-01&rft.volume=154&rft.spage=70&rft.epage=77&rft.pages=70-77&rft.issn=0169-7722&rft.eissn=1873-6009&rft_id=info:doi/10.1016/j.jconhyd.2013.08.007&rft_dat=%3Cproquest_swepu%3E1443428810%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443428810&rft_id=info:pmid/24090737&rft_els_id=S0169772213001253&rfr_iscdi=true