Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling
Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whol...
Gespeichert in:
Veröffentlicht in: | Global change biology 2009-04, Vol.15 (4), p.992-1014 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1014 |
---|---|
container_issue | 4 |
container_start_page | 992 |
container_title | Global change biology |
container_volume | 15 |
creator | GAUDINSKI, J.B TORN, M.S RILEY, W.J SWANSTON, C TRUMBORE, S.E JOSLIN, J.D MAJDI, H DAWSON, T.E HANSON, P.J |
description | Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon (¹⁴C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissue is ~0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-¹⁴C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots ( |
doi_str_mv | 10.1111/j.1365-2486.2008.01736.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_44580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14026139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6146-cf8c0829ce8ecce44b7fcdbd670df778e232198a88f741f703124ab9e5aea95d3</originalsourceid><addsrcrecordid>eNqNkkGP0zAQhSMEEsvCb8AgwYkU20mcBGkPS4GCqEBit8tx5DiTbkoSF09C2zN_HIdURUJCwpcZy997Go1fEDDBZ8Kfl5uZiFQSyjhTM8l5NuMijdRsfyc4Oz3cHfskDgUX0f3gAdGGcx5Jrs6CnytCZitGvXVYMqNdYTvmkND9QGJ1x9bO7vrbkemx3aLTPbLeITJnbU9MdyVrUFesGEp65a-6OZBXDlR3a-Z0WdujaYuaBoctdkdZa0tsPPUwuFfphvDRsZ4Hq3dvr-fvw-XnxYf55TI0SsQqNFVmeCZzgxkag3FcpJUpi1KlvKzSNEMZSZFnOsuqNBZVyiMhY13kmGjUeVJG50E4-dIOt0MBW1e32h3A6hqoGQrtxgKEEMdJxj3_4p_8m_rmEqxbw229BsEjnnr8yYRb6r2hqXs0t8Z2HZoe8jjPc-mZ5xOzdfb7gNRDW5PBptEd2oFAxFwqEeUefPoXuLGD88slkDyRKlFKeSibIOMskcPqNKLgMKYDNjCGAMYQwJgO-J0O2Hvps6O_JqObyunO1HTSSyFzleSx5y4mblc3ePhvf1jMX4_dn53X1OP-pNfuG6g0ShP4-mkBN9cf-eKKL-GL5x9PfKUt6LXzM62upM8tF0nu_0REvwCaAuhc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205265666</pqid></control><display><type>article</type><title>Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>GAUDINSKI, J.B ; TORN, M.S ; RILEY, W.J ; SWANSTON, C ; TRUMBORE, S.E ; JOSLIN, J.D ; MAJDI, H ; DAWSON, T.E ; HANSON, P.J</creator><creatorcontrib>GAUDINSKI, J.B ; TORN, M.S ; RILEY, W.J ; SWANSTON, C ; TRUMBORE, S.E ; JOSLIN, J.D ; MAJDI, H ; DAWSON, T.E ; HANSON, P.J ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Oak Ridge National Environmental Research Park ; Sveriges lantbruksuniversitet</creatorcontrib><description>Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon (¹⁴C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissue is ~0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-¹⁴C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/j.1365-2486.2008.01736.x</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>14C ; Animal and plant ecology ; Animal, plant and microbial ecology ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; C ; Carbon ; CARBON 14 ; carbon cycling ; carbon isotope ; carbon reserves ; Climate change ; Ecology ; Ekologi ; fine-root turnover time ; FORESTS ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; isotopes ; ISOTOPIC EXCHANGE ; LEAVES ; mean age of carbon ; Methods and techniques (sampling, tagging, trapping, modelling...) ; OAKS ; PHOTOSYNTHESIS ; PLANT GROWTH ; radiocarbon ; Radioisotopes ; ROOTS ; stored carbon ; Trees</subject><ispartof>Global change biology, 2009-04, Vol.15 (4), p.992-1014</ispartof><rights>2009 Blackwell Publishing Ltd</rights><rights>2009 INIST-CNRS</rights><rights>2009 Blackwell Publishing</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6146-cf8c0829ce8ecce44b7fcdbd670df778e232198a88f741f703124ab9e5aea95d3</citedby><cites>FETCH-LOGICAL-c6146-cf8c0829ce8ecce44b7fcdbd670df778e232198a88f741f703124ab9e5aea95d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2486.2008.01736.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2486.2008.01736.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21296594$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/949992$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-10307$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/44580$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>GAUDINSKI, J.B</creatorcontrib><creatorcontrib>TORN, M.S</creatorcontrib><creatorcontrib>RILEY, W.J</creatorcontrib><creatorcontrib>SWANSTON, C</creatorcontrib><creatorcontrib>TRUMBORE, S.E</creatorcontrib><creatorcontrib>JOSLIN, J.D</creatorcontrib><creatorcontrib>MAJDI, H</creatorcontrib><creatorcontrib>DAWSON, T.E</creatorcontrib><creatorcontrib>HANSON, P.J</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Environmental Research Park</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling</title><title>Global change biology</title><description>Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon (¹⁴C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissue is ~0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-¹⁴C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).</description><subject>14C</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>C</subject><subject>Carbon</subject><subject>CARBON 14</subject><subject>carbon cycling</subject><subject>carbon isotope</subject><subject>carbon reserves</subject><subject>Climate change</subject><subject>Ecology</subject><subject>Ekologi</subject><subject>fine-root turnover time</subject><subject>FORESTS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>isotopes</subject><subject>ISOTOPIC EXCHANGE</subject><subject>LEAVES</subject><subject>mean age of carbon</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>OAKS</subject><subject>PHOTOSYNTHESIS</subject><subject>PLANT GROWTH</subject><subject>radiocarbon</subject><subject>Radioisotopes</subject><subject>ROOTS</subject><subject>stored carbon</subject><subject>Trees</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkkGP0zAQhSMEEsvCb8AgwYkU20mcBGkPS4GCqEBit8tx5DiTbkoSF09C2zN_HIdURUJCwpcZy997Go1fEDDBZ8Kfl5uZiFQSyjhTM8l5NuMijdRsfyc4Oz3cHfskDgUX0f3gAdGGcx5Jrs6CnytCZitGvXVYMqNdYTvmkND9QGJ1x9bO7vrbkemx3aLTPbLeITJnbU9MdyVrUFesGEp65a-6OZBXDlR3a-Z0WdujaYuaBoctdkdZa0tsPPUwuFfphvDRsZ4Hq3dvr-fvw-XnxYf55TI0SsQqNFVmeCZzgxkag3FcpJUpi1KlvKzSNEMZSZFnOsuqNBZVyiMhY13kmGjUeVJG50E4-dIOt0MBW1e32h3A6hqoGQrtxgKEEMdJxj3_4p_8m_rmEqxbw229BsEjnnr8yYRb6r2hqXs0t8Z2HZoe8jjPc-mZ5xOzdfb7gNRDW5PBptEd2oFAxFwqEeUefPoXuLGD88slkDyRKlFKeSibIOMskcPqNKLgMKYDNjCGAMYQwJgO-J0O2Hvps6O_JqObyunO1HTSSyFzleSx5y4mblc3ePhvf1jMX4_dn53X1OP-pNfuG6g0ShP4-mkBN9cf-eKKL-GL5x9PfKUt6LXzM62upM8tF0nu_0REvwCaAuhc</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>GAUDINSKI, J.B</creator><creator>TORN, M.S</creator><creator>RILEY, W.J</creator><creator>SWANSTON, C</creator><creator>TRUMBORE, S.E</creator><creator>JOSLIN, J.D</creator><creator>MAJDI, H</creator><creator>DAWSON, T.E</creator><creator>HANSON, P.J</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7ST</scope><scope>SOI</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8W</scope></search><sort><creationdate>200904</creationdate><title>Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling</title><author>GAUDINSKI, J.B ; TORN, M.S ; RILEY, W.J ; SWANSTON, C ; TRUMBORE, S.E ; JOSLIN, J.D ; MAJDI, H ; DAWSON, T.E ; HANSON, P.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6146-cf8c0829ce8ecce44b7fcdbd670df778e232198a88f741f703124ab9e5aea95d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>14C</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>C</topic><topic>Carbon</topic><topic>CARBON 14</topic><topic>carbon cycling</topic><topic>carbon isotope</topic><topic>carbon reserves</topic><topic>Climate change</topic><topic>Ecology</topic><topic>Ekologi</topic><topic>fine-root turnover time</topic><topic>FORESTS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>isotopes</topic><topic>ISOTOPIC EXCHANGE</topic><topic>LEAVES</topic><topic>mean age of carbon</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>OAKS</topic><topic>PHOTOSYNTHESIS</topic><topic>PLANT GROWTH</topic><topic>radiocarbon</topic><topic>Radioisotopes</topic><topic>ROOTS</topic><topic>stored carbon</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GAUDINSKI, J.B</creatorcontrib><creatorcontrib>TORN, M.S</creatorcontrib><creatorcontrib>RILEY, W.J</creatorcontrib><creatorcontrib>SWANSTON, C</creatorcontrib><creatorcontrib>TRUMBORE, S.E</creatorcontrib><creatorcontrib>JOSLIN, J.D</creatorcontrib><creatorcontrib>MAJDI, H</creatorcontrib><creatorcontrib>DAWSON, T.E</creatorcontrib><creatorcontrib>HANSON, P.J</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Environmental Research Park</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Högskolan i Gävle</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GAUDINSKI, J.B</au><au>TORN, M.S</au><au>RILEY, W.J</au><au>SWANSTON, C</au><au>TRUMBORE, S.E</au><au>JOSLIN, J.D</au><au>MAJDI, H</au><au>DAWSON, T.E</au><au>HANSON, P.J</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Oak Ridge National Environmental Research Park</aucorp><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling</atitle><jtitle>Global change biology</jtitle><date>2009-04</date><risdate>2009</risdate><volume>15</volume><issue>4</issue><spage>992</spage><epage>1014</epage><pages>992-1014</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon (¹⁴C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissue is ~0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-¹⁴C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2486.2008.01736.x</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2009-04, Vol.15 (4), p.992-1014 |
issn | 1354-1013 1365-2486 1365-2486 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_44580 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 14C Animal and plant ecology Animal, plant and microbial ecology BASIC BIOLOGICAL SCIENCES Biological and medical sciences C Carbon CARBON 14 carbon cycling carbon isotope carbon reserves Climate change Ecology Ekologi fine-root turnover time FORESTS Fundamental and applied biological sciences. Psychology General aspects General aspects. Techniques isotopes ISOTOPIC EXCHANGE LEAVES mean age of carbon Methods and techniques (sampling, tagging, trapping, modelling...) OAKS PHOTOSYNTHESIS PLANT GROWTH radiocarbon Radioisotopes ROOTS stored carbon Trees |
title | Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20stored%20carbon%20reserves%20in%20growth%20of%20temperate%20tree%20roots%20and%20leaf%20buds:%20analyses%20using%20radiocarbon%20measurements%20and%20modeling&rft.jtitle=Global%20change%20biology&rft.au=GAUDINSKI,%20J.B&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2009-04&rft.volume=15&rft.issue=4&rft.spage=992&rft.epage=1014&rft.pages=992-1014&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/j.1365-2486.2008.01736.x&rft_dat=%3Cproquest_swepu%3E14026139%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205265666&rft_id=info:pmid/&rfr_iscdi=true |