Forest height estimation using semi-individual tree detection in multi-spectral 3D aerial DMC data
The increasing availability of accurate Digital Elevation Models (DEMs) of nation-wide cover has opened new possibilities to produce accurate forest variable estimation using 3D data acquired from aerial imagery. Such data can be produced by automatic matching of stereo images and photogrammetric mo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6375 |
---|---|
container_issue | |
container_start_page | 6372 |
container_title | |
container_volume | |
creator | Wallerman, J. Bohlin, J. Fransson, J. E. S. |
description | The increasing availability of accurate Digital Elevation Models (DEMs) of nation-wide cover has opened new possibilities to produce accurate forest variable estimation using 3D data acquired from aerial imagery. Such data can be produced by automatic matching of stereo images and photogrammetric modeling of the forest canopy height. Using existing accurate DEM information, the forest canopy height above ground is then easily assessed. Today, Airborne Laser Scanning (ALS) is frequently used to capture data for accurate estimation of variables to be used in forest management planning. Recent studies in Scandinavia show estimation accuracies almost as accurate as ALS, using 3D data obtained from standard aerial imagery, at least for the most important forest variables. So far mainly area-based estimation methods at field plot or raster cell level have been studied. This paper reports early results from applying a single-tree modeling approach, corresponding to the Semi-ITC (Individual Tree Crown) method, commonly used in ALS-based applications, using 3D data acquired from aerial DMC imagery. Here, a simplified Semi-ITC method was used to estimate tree height at segment level. The Root Mean Square Error of estimating the maximum tree height was 34% (of the true mean maximum tree height). Clearly, the methodology used shows promising results and has potential to be used in forest management planning. |
doi_str_mv | 10.1109/IGARSS.2012.6352717 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_43744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6352717</ieee_id><sourcerecordid>oai_slubar_slu_se_43744</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-f6d06dc3987497cc2b5a667cf26bba090c45c8ba95d14433f3220ff4355bc0073</originalsourceid><addsrcrecordid>eNpNkN1OAjEQhetfIkGegJu-wGLb2f5dEhAkwZiIXm_abhdqloVsuxrf3lWIcW7OyZwvJ5lBaEzJhFKi71fL6ctmM2GEsokAziSVF2ikpaK5kEApV-oSDRjlkElC4Op_Jgi9PmdCa3GLRjG-k34UVSBhgOzi0PqY8M6H7S7h3oa9SeHQ4C6GZouj34csNGX4CGVnapxa73Hpk3e_UGjwvqtTyOKx37Q9AHNsfBt6N3-a4dIkc4duKlNHPzrrEL0tHl5nj9n6ebmaTddZYBRSVomSiNKBVjLX0jlmuRFCuooJaw3RxOXcKWs0L2meA1TAGKmqHDi3jhAJQ5SdeuOnP3a2OLb9Ke1XcTChiHVnTfsjRfRFDrJvGKLxiQ_e-z_6_GH4BolibBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Forest height estimation using semi-individual tree detection in multi-spectral 3D aerial DMC data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wallerman, J. ; Bohlin, J. ; Fransson, J. E. S.</creator><creatorcontrib>Wallerman, J. ; Bohlin, J. ; Fransson, J. E. S. ; Sveriges lantbruksuniversitet</creatorcontrib><description>The increasing availability of accurate Digital Elevation Models (DEMs) of nation-wide cover has opened new possibilities to produce accurate forest variable estimation using 3D data acquired from aerial imagery. Such data can be produced by automatic matching of stereo images and photogrammetric modeling of the forest canopy height. Using existing accurate DEM information, the forest canopy height above ground is then easily assessed. Today, Airborne Laser Scanning (ALS) is frequently used to capture data for accurate estimation of variables to be used in forest management planning. Recent studies in Scandinavia show estimation accuracies almost as accurate as ALS, using 3D data obtained from standard aerial imagery, at least for the most important forest variables. So far mainly area-based estimation methods at field plot or raster cell level have been studied. This paper reports early results from applying a single-tree modeling approach, corresponding to the Semi-ITC (Individual Tree Crown) method, commonly used in ALS-based applications, using 3D data acquired from aerial DMC imagery. Here, a simplified Semi-ITC method was used to estimate tree height at segment level. The Root Mean Square Error of estimating the maximum tree height was 34% (of the true mean maximum tree height). Clearly, the methodology used shows promising results and has potential to be used in forest management planning.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISSN: 2153-7003</identifier><identifier>ISBN: 9781467311601</identifier><identifier>ISBN: 146731160X</identifier><identifier>ISBN: 9781467311595</identifier><identifier>ISBN: 1467311596</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781467311588</identifier><identifier>EISBN: 1467311588</identifier><identifier>EISBN: 9781467311595</identifier><identifier>EISBN: 1467311596</identifier><identifier>DOI: 10.1109/IGARSS.2012.6352717</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Aerial photography ; Data models ; Estimation ; Fjärranalysteknik ; Forest Science ; forestry ; inventory ; Laser modes ; photogrammetry ; point cloud ; Remote Sensing ; Skogsvetenskap ; Vegetation</subject><ispartof>2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.6372-6375</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6352717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,310,311,781,785,790,791,886,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6352717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://res.slu.se/id/publ/43744$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallerman, J.</creatorcontrib><creatorcontrib>Bohlin, J.</creatorcontrib><creatorcontrib>Fransson, J. E. S.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Forest height estimation using semi-individual tree detection in multi-spectral 3D aerial DMC data</title><title>2012 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>The increasing availability of accurate Digital Elevation Models (DEMs) of nation-wide cover has opened new possibilities to produce accurate forest variable estimation using 3D data acquired from aerial imagery. Such data can be produced by automatic matching of stereo images and photogrammetric modeling of the forest canopy height. Using existing accurate DEM information, the forest canopy height above ground is then easily assessed. Today, Airborne Laser Scanning (ALS) is frequently used to capture data for accurate estimation of variables to be used in forest management planning. Recent studies in Scandinavia show estimation accuracies almost as accurate as ALS, using 3D data obtained from standard aerial imagery, at least for the most important forest variables. So far mainly area-based estimation methods at field plot or raster cell level have been studied. This paper reports early results from applying a single-tree modeling approach, corresponding to the Semi-ITC (Individual Tree Crown) method, commonly used in ALS-based applications, using 3D data acquired from aerial DMC imagery. Here, a simplified Semi-ITC method was used to estimate tree height at segment level. The Root Mean Square Error of estimating the maximum tree height was 34% (of the true mean maximum tree height). Clearly, the methodology used shows promising results and has potential to be used in forest management planning.</description><subject>Accuracy</subject><subject>Aerial photography</subject><subject>Data models</subject><subject>Estimation</subject><subject>Fjärranalysteknik</subject><subject>Forest Science</subject><subject>forestry</subject><subject>inventory</subject><subject>Laser modes</subject><subject>photogrammetry</subject><subject>point cloud</subject><subject>Remote Sensing</subject><subject>Skogsvetenskap</subject><subject>Vegetation</subject><issn>2153-6996</issn><issn>2153-7003</issn><issn>2153-7003</issn><isbn>9781467311601</isbn><isbn>146731160X</isbn><isbn>9781467311595</isbn><isbn>1467311596</isbn><isbn>9781467311588</isbn><isbn>1467311588</isbn><isbn>9781467311595</isbn><isbn>1467311596</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkN1OAjEQhetfIkGegJu-wGLb2f5dEhAkwZiIXm_abhdqloVsuxrf3lWIcW7OyZwvJ5lBaEzJhFKi71fL6ctmM2GEsokAziSVF2ikpaK5kEApV-oSDRjlkElC4Op_Jgi9PmdCa3GLRjG-k34UVSBhgOzi0PqY8M6H7S7h3oa9SeHQ4C6GZouj34csNGX4CGVnapxa73Hpk3e_UGjwvqtTyOKx37Q9AHNsfBt6N3-a4dIkc4duKlNHPzrrEL0tHl5nj9n6ebmaTddZYBRSVomSiNKBVjLX0jlmuRFCuooJaw3RxOXcKWs0L2meA1TAGKmqHDi3jhAJQ5SdeuOnP3a2OLb9Ke1XcTChiHVnTfsjRfRFDrJvGKLxiQ_e-z_6_GH4BolibBM</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Wallerman, J.</creator><creator>Bohlin, J.</creator><creator>Fransson, J. E. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ADTPV</scope><scope>BNKNJ</scope></search><sort><creationdate>201207</creationdate><title>Forest height estimation using semi-individual tree detection in multi-spectral 3D aerial DMC data</title><author>Wallerman, J. ; Bohlin, J. ; Fransson, J. E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-f6d06dc3987497cc2b5a667cf26bba090c45c8ba95d14433f3220ff4355bc0073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Aerial photography</topic><topic>Data models</topic><topic>Estimation</topic><topic>Fjärranalysteknik</topic><topic>Forest Science</topic><topic>forestry</topic><topic>inventory</topic><topic>Laser modes</topic><topic>photogrammetry</topic><topic>point cloud</topic><topic>Remote Sensing</topic><topic>Skogsvetenskap</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Wallerman, J.</creatorcontrib><creatorcontrib>Bohlin, J.</creatorcontrib><creatorcontrib>Fransson, J. E. S.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SwePub</collection><collection>SwePub Conference</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wallerman, J.</au><au>Bohlin, J.</au><au>Fransson, J. E. S.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Forest height estimation using semi-individual tree detection in multi-spectral 3D aerial DMC data</atitle><btitle>2012 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2012-07</date><risdate>2012</risdate><spage>6372</spage><epage>6375</epage><pages>6372-6375</pages><issn>2153-6996</issn><issn>2153-7003</issn><eissn>2153-7003</eissn><isbn>9781467311601</isbn><isbn>146731160X</isbn><isbn>9781467311595</isbn><isbn>1467311596</isbn><eisbn>9781467311588</eisbn><eisbn>1467311588</eisbn><eisbn>9781467311595</eisbn><eisbn>1467311596</eisbn><abstract>The increasing availability of accurate Digital Elevation Models (DEMs) of nation-wide cover has opened new possibilities to produce accurate forest variable estimation using 3D data acquired from aerial imagery. Such data can be produced by automatic matching of stereo images and photogrammetric modeling of the forest canopy height. Using existing accurate DEM information, the forest canopy height above ground is then easily assessed. Today, Airborne Laser Scanning (ALS) is frequently used to capture data for accurate estimation of variables to be used in forest management planning. Recent studies in Scandinavia show estimation accuracies almost as accurate as ALS, using 3D data obtained from standard aerial imagery, at least for the most important forest variables. So far mainly area-based estimation methods at field plot or raster cell level have been studied. This paper reports early results from applying a single-tree modeling approach, corresponding to the Semi-ITC (Individual Tree Crown) method, commonly used in ALS-based applications, using 3D data acquired from aerial DMC imagery. Here, a simplified Semi-ITC method was used to estimate tree height at segment level. The Root Mean Square Error of estimating the maximum tree height was 34% (of the true mean maximum tree height). Clearly, the methodology used shows promising results and has potential to be used in forest management planning.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2012.6352717</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-6996 |
ispartof | 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.6372-6375 |
issn | 2153-6996 2153-7003 2153-7003 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_43744 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Aerial photography Data models Estimation Fjärranalysteknik Forest Science forestry inventory Laser modes photogrammetry point cloud Remote Sensing Skogsvetenskap Vegetation |
title | Forest height estimation using semi-individual tree detection in multi-spectral 3D aerial DMC data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Forest%20height%20estimation%20using%20semi-individual%20tree%20detection%20in%20multi-spectral%203D%20aerial%20DMC%20data&rft.btitle=2012%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Wallerman,%20J.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2012-07&rft.spage=6372&rft.epage=6375&rft.pages=6372-6375&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781467311601&rft.isbn_list=146731160X&rft.isbn_list=9781467311595&rft.isbn_list=1467311596&rft_id=info:doi/10.1109/IGARSS.2012.6352717&rft_dat=%3Cswepub_6IE%3Eoai_slubar_slu_se_43744%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311588&rft.eisbn_list=1467311588&rft.eisbn_list=9781467311595&rft.eisbn_list=1467311596&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6352717&rfr_iscdi=true |