Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation

We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lindblad, Joakim, Sladoje, Nataša, Ćurić, Vladimir, Sarve, Hamid, Johansson, Carina B., Borgefors, Gunilla
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 759
container_issue
container_start_page 750
container_title
container_volume 5575
creator Lindblad, Joakim
Sladoje, Nataša
Ćurić, Vladimir
Sarve, Hamid
Johansson, Carina B.
Borgefors, Gunilla
description We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmentation method, so that the former is used for automatic seeding of the later. A thorough evaluation of the proposed segmentation method is performed. Comparison with previously published automatically obtained measurements, as well as with manually obtained ones, is presented. The proposed method improves the segmentation and, consequently, the accuracy of the automatic measurements, while keeping advantages with respect to the manual ones, by being fast, repeatable, and objective.
doi_str_mv 10.1007/978-3-642-02230-2_77
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_sprin</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_27208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_uu_110688</sourcerecordid><originalsourceid>FETCH-LOGICAL-s356t-d19c043159484603b77aa25e588fc9c1e6f5fa80d3c54848fd96a3abc848ee9a3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRc1Loi39Axb5AAx-JHG8bAuFSpVQgbIdOYkTGdK4ihNQ-_U4pVskVjNz58xsDkLXlNxSQsSdFAnmOA4ZJoxxghkIcYLGPuY-PGTsFA1oTCnmPJRnaHhcMBmeowHxeyxFyC_R0LkPQggTkg3QarHZNvZL58GqU3VrCpOp1tg6sEUwtbUOXvTG5rqqTF0G6S5Yt6Yy-36Yd_v9Lpgq529fdbnRdXu4vEIXhaqcHh_rCK3nD2-zJ7x8flzMJkvseBS3OKcyIyGnkQyTMCY8FUIpFukoSYpMZlTHRVSohOQ8izyRFLmMFVdp5nutpeIjhH__um-97VLYNmajmh1YZcBVXaqavoDTwAQjiedv_uTvzfsEbFNC1wGlJE7-idum53kceZwdcQ_WpW4gtfbTASXQ-wMvCjh4I3BwBb0__gODros3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation</title><source>Springer Books</source><creator>Lindblad, Joakim ; Sladoje, Nataša ; Ćurić, Vladimir ; Sarve, Hamid ; Johansson, Carina B. ; Borgefors, Gunilla</creator><contributor>Hardeberg, Jon Yngve ; Salberg, Arnt-Børre ; Jenssen, Robert</contributor><creatorcontrib>Lindblad, Joakim ; Sladoje, Nataša ; Ćurić, Vladimir ; Sarve, Hamid ; Johansson, Carina B. ; Borgefors, Gunilla ; Sveriges lantbruksuniversitet ; Hardeberg, Jon Yngve ; Salberg, Arnt-Børre ; Jenssen, Robert</creatorcontrib><description>We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmentation method, so that the former is used for automatic seeding of the later. A thorough evaluation of the proposed segmentation method is performed. Comparison with previously published automatically obtained measurements, as well as with manually obtained ones, is presented. The proposed method improves the segmentation and, consequently, the accuracy of the automatic measurements, while keeping advantages with respect to the manual ones, by being fast, repeatable, and objective.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISSN: 1611-3349</identifier><identifier>ISBN: 3642022294</identifier><identifier>ISBN: 9783642022296</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783642022302</identifier><identifier>EISBN: 3642022308</identifier><identifier>DOI: 10.1007/978-3-642-02230-2_77</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bildanalys ; Biomaterial ; Biomaterials ; Computerized Image Analysis ; Datoriserad bildanalys ; Discriminant Analysis ; Ground Section ; Image analysis ; Information technology ; Informationsteknik ; Medicin ; Medicine ; Multiple Seed ; ODONTOLOGI ; ODONTOLOGY ; Segmentation Method ; Suggested Method ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>Image Analysis, 2009, Vol.5575, p.750-759</ispartof><rights>Springer-Verlag Berlin Heidelberg 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-642-02230-2_77$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-642-02230-2_77$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,779,780,784,789,790,793,885,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-11365$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-110688$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/27208$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Hardeberg, Jon Yngve</contributor><contributor>Salberg, Arnt-Børre</contributor><contributor>Jenssen, Robert</contributor><creatorcontrib>Lindblad, Joakim</creatorcontrib><creatorcontrib>Sladoje, Nataša</creatorcontrib><creatorcontrib>Ćurić, Vladimir</creatorcontrib><creatorcontrib>Sarve, Hamid</creatorcontrib><creatorcontrib>Johansson, Carina B.</creatorcontrib><creatorcontrib>Borgefors, Gunilla</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation</title><title>Image Analysis</title><description>We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmentation method, so that the former is used for automatic seeding of the later. A thorough evaluation of the proposed segmentation method is performed. Comparison with previously published automatically obtained measurements, as well as with manually obtained ones, is presented. The proposed method improves the segmentation and, consequently, the accuracy of the automatic measurements, while keeping advantages with respect to the manual ones, by being fast, repeatable, and objective.</description><subject>Bildanalys</subject><subject>Biomaterial</subject><subject>Biomaterials</subject><subject>Computerized Image Analysis</subject><subject>Datoriserad bildanalys</subject><subject>Discriminant Analysis</subject><subject>Ground Section</subject><subject>Image analysis</subject><subject>Information technology</subject><subject>Informationsteknik</subject><subject>Medicin</subject><subject>Medicine</subject><subject>Multiple Seed</subject><subject>ODONTOLOGI</subject><subject>ODONTOLOGY</subject><subject>Segmentation Method</subject><subject>Suggested Method</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>0302-9743</issn><issn>1611-3349</issn><issn>1611-3349</issn><isbn>3642022294</isbn><isbn>9783642022296</isbn><isbn>9783642022302</isbn><isbn>3642022308</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqNkctOwzAQRc1Loi39Axb5AAx-JHG8bAuFSpVQgbIdOYkTGdK4ihNQ-_U4pVskVjNz58xsDkLXlNxSQsSdFAnmOA4ZJoxxghkIcYLGPuY-PGTsFA1oTCnmPJRnaHhcMBmeowHxeyxFyC_R0LkPQggTkg3QarHZNvZL58GqU3VrCpOp1tg6sEUwtbUOXvTG5rqqTF0G6S5Yt6Yy-36Yd_v9Lpgq529fdbnRdXu4vEIXhaqcHh_rCK3nD2-zJ7x8flzMJkvseBS3OKcyIyGnkQyTMCY8FUIpFukoSYpMZlTHRVSohOQ8izyRFLmMFVdp5nutpeIjhH__um-97VLYNmajmh1YZcBVXaqavoDTwAQjiedv_uTvzfsEbFNC1wGlJE7-idum53kceZwdcQ_WpW4gtfbTASXQ-wMvCjh4I3BwBb0__gODros3</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Lindblad, Joakim</creator><creator>Sladoje, Nataša</creator><creator>Ćurić, Vladimir</creator><creator>Sarve, Hamid</creator><creator>Johansson, Carina B.</creator><creator>Borgefors, Gunilla</creator><general>Springer Berlin Heidelberg</general><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D91</scope><scope>DF2</scope></search><sort><creationdate>2009</creationdate><title>Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation</title><author>Lindblad, Joakim ; Sladoje, Nataša ; Ćurić, Vladimir ; Sarve, Hamid ; Johansson, Carina B. ; Borgefors, Gunilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s356t-d19c043159484603b77aa25e588fc9c1e6f5fa80d3c54848fd96a3abc848ee9a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bildanalys</topic><topic>Biomaterial</topic><topic>Biomaterials</topic><topic>Computerized Image Analysis</topic><topic>Datoriserad bildanalys</topic><topic>Discriminant Analysis</topic><topic>Ground Section</topic><topic>Image analysis</topic><topic>Information technology</topic><topic>Informationsteknik</topic><topic>Medicin</topic><topic>Medicine</topic><topic>Multiple Seed</topic><topic>ODONTOLOGI</topic><topic>ODONTOLOGY</topic><topic>Segmentation Method</topic><topic>Suggested Method</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindblad, Joakim</creatorcontrib><creatorcontrib>Sladoje, Nataša</creatorcontrib><creatorcontrib>Ćurić, Vladimir</creatorcontrib><creatorcontrib>Sarve, Hamid</creatorcontrib><creatorcontrib>Johansson, Carina B.</creatorcontrib><creatorcontrib>Borgefors, Gunilla</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Örebro universitet</collection><collection>SWEPUB Uppsala universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindblad, Joakim</au><au>Sladoje, Nataša</au><au>Ćurić, Vladimir</au><au>Sarve, Hamid</au><au>Johansson, Carina B.</au><au>Borgefors, Gunilla</au><au>Hardeberg, Jon Yngve</au><au>Salberg, Arnt-Børre</au><au>Jenssen, Robert</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation</atitle><btitle>Image Analysis</btitle><date>2009</date><risdate>2009</risdate><volume>5575</volume><spage>750</spage><epage>759</epage><pages>750-759</pages><issn>0302-9743</issn><issn>1611-3349</issn><eissn>1611-3349</eissn><isbn>3642022294</isbn><isbn>9783642022296</isbn><eisbn>9783642022302</eisbn><eisbn>3642022308</eisbn><abstract>We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmentation method, so that the former is used for automatic seeding of the later. A thorough evaluation of the proposed segmentation method is performed. Comparison with previously published automatically obtained measurements, as well as with manually obtained ones, is presented. The proposed method improves the segmentation and, consequently, the accuracy of the automatic measurements, while keeping advantages with respect to the manual ones, by being fast, repeatable, and objective.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-642-02230-2_77</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Image Analysis, 2009, Vol.5575, p.750-759
issn 0302-9743
1611-3349
1611-3349
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_27208
source Springer Books
subjects Bildanalys
Biomaterial
Biomaterials
Computerized Image Analysis
Datoriserad bildanalys
Discriminant Analysis
Ground Section
Image analysis
Information technology
Informationsteknik
Medicin
Medicine
Multiple Seed
ODONTOLOGI
ODONTOLOGY
Segmentation Method
Suggested Method
TECHNOLOGY
TEKNIKVETENSKAP
title Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20Quantification%20of%20Bone%20Remodelling%20by%20Utilizing%20Fuzzy%20Based%20Segmentation&rft.btitle=Image%20Analysis&rft.au=Lindblad,%20Joakim&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2009&rft.volume=5575&rft.spage=750&rft.epage=759&rft.pages=750-759&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3642022294&rft.isbn_list=9783642022296&rft_id=info:doi/10.1007/978-3-642-02230-2_77&rft_dat=%3Cswepub_sprin%3Eoai_DiVA_org_uu_110688%3C/swepub_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783642022302&rft.eisbn_list=3642022308&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true