Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation
We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmenta...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 759 |
---|---|
container_issue | |
container_start_page | 750 |
container_title | |
container_volume | 5575 |
creator | Lindblad, Joakim Sladoje, Nataša Ćurić, Vladimir Sarve, Hamid Johansson, Carina B. Borgefors, Gunilla |
description | We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmentation method, so that the former is used for automatic seeding of the later. A thorough evaluation of the proposed segmentation method is performed. Comparison with previously published automatically obtained measurements, as well as with manually obtained ones, is presented. The proposed method improves the segmentation and, consequently, the accuracy of the automatic measurements, while keeping advantages with respect to the manual ones, by being fast, repeatable, and objective. |
doi_str_mv | 10.1007/978-3-642-02230-2_77 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>swepub_sprin</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_27208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_uu_110688</sourcerecordid><originalsourceid>FETCH-LOGICAL-s356t-d19c043159484603b77aa25e588fc9c1e6f5fa80d3c54848fd96a3abc848ee9a3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRc1Loi39Axb5AAx-JHG8bAuFSpVQgbIdOYkTGdK4ihNQ-_U4pVskVjNz58xsDkLXlNxSQsSdFAnmOA4ZJoxxghkIcYLGPuY-PGTsFA1oTCnmPJRnaHhcMBmeowHxeyxFyC_R0LkPQggTkg3QarHZNvZL58GqU3VrCpOp1tg6sEUwtbUOXvTG5rqqTF0G6S5Yt6Yy-36Yd_v9Lpgq529fdbnRdXu4vEIXhaqcHh_rCK3nD2-zJ7x8flzMJkvseBS3OKcyIyGnkQyTMCY8FUIpFukoSYpMZlTHRVSohOQ8izyRFLmMFVdp5nutpeIjhH__um-97VLYNmajmh1YZcBVXaqavoDTwAQjiedv_uTvzfsEbFNC1wGlJE7-idum53kceZwdcQ_WpW4gtfbTASXQ-wMvCjh4I3BwBb0__gODros3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation</title><source>Springer Books</source><creator>Lindblad, Joakim ; Sladoje, Nataša ; Ćurić, Vladimir ; Sarve, Hamid ; Johansson, Carina B. ; Borgefors, Gunilla</creator><contributor>Hardeberg, Jon Yngve ; Salberg, Arnt-Børre ; Jenssen, Robert</contributor><creatorcontrib>Lindblad, Joakim ; Sladoje, Nataša ; Ćurić, Vladimir ; Sarve, Hamid ; Johansson, Carina B. ; Borgefors, Gunilla ; Sveriges lantbruksuniversitet ; Hardeberg, Jon Yngve ; Salberg, Arnt-Børre ; Jenssen, Robert</creatorcontrib><description>We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmentation method, so that the former is used for automatic seeding of the later. A thorough evaluation of the proposed segmentation method is performed. Comparison with previously published automatically obtained measurements, as well as with manually obtained ones, is presented. The proposed method improves the segmentation and, consequently, the accuracy of the automatic measurements, while keeping advantages with respect to the manual ones, by being fast, repeatable, and objective.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISSN: 1611-3349</identifier><identifier>ISBN: 3642022294</identifier><identifier>ISBN: 9783642022296</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783642022302</identifier><identifier>EISBN: 3642022308</identifier><identifier>DOI: 10.1007/978-3-642-02230-2_77</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bildanalys ; Biomaterial ; Biomaterials ; Computerized Image Analysis ; Datoriserad bildanalys ; Discriminant Analysis ; Ground Section ; Image analysis ; Information technology ; Informationsteknik ; Medicin ; Medicine ; Multiple Seed ; ODONTOLOGI ; ODONTOLOGY ; Segmentation Method ; Suggested Method ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>Image Analysis, 2009, Vol.5575, p.750-759</ispartof><rights>Springer-Verlag Berlin Heidelberg 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-642-02230-2_77$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-642-02230-2_77$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,779,780,784,789,790,793,885,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-11365$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-110688$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/27208$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Hardeberg, Jon Yngve</contributor><contributor>Salberg, Arnt-Børre</contributor><contributor>Jenssen, Robert</contributor><creatorcontrib>Lindblad, Joakim</creatorcontrib><creatorcontrib>Sladoje, Nataša</creatorcontrib><creatorcontrib>Ćurić, Vladimir</creatorcontrib><creatorcontrib>Sarve, Hamid</creatorcontrib><creatorcontrib>Johansson, Carina B.</creatorcontrib><creatorcontrib>Borgefors, Gunilla</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation</title><title>Image Analysis</title><description>We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmentation method, so that the former is used for automatic seeding of the later. A thorough evaluation of the proposed segmentation method is performed. Comparison with previously published automatically obtained measurements, as well as with manually obtained ones, is presented. The proposed method improves the segmentation and, consequently, the accuracy of the automatic measurements, while keeping advantages with respect to the manual ones, by being fast, repeatable, and objective.</description><subject>Bildanalys</subject><subject>Biomaterial</subject><subject>Biomaterials</subject><subject>Computerized Image Analysis</subject><subject>Datoriserad bildanalys</subject><subject>Discriminant Analysis</subject><subject>Ground Section</subject><subject>Image analysis</subject><subject>Information technology</subject><subject>Informationsteknik</subject><subject>Medicin</subject><subject>Medicine</subject><subject>Multiple Seed</subject><subject>ODONTOLOGI</subject><subject>ODONTOLOGY</subject><subject>Segmentation Method</subject><subject>Suggested Method</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>0302-9743</issn><issn>1611-3349</issn><issn>1611-3349</issn><isbn>3642022294</isbn><isbn>9783642022296</isbn><isbn>9783642022302</isbn><isbn>3642022308</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqNkctOwzAQRc1Loi39Axb5AAx-JHG8bAuFSpVQgbIdOYkTGdK4ihNQ-_U4pVskVjNz58xsDkLXlNxSQsSdFAnmOA4ZJoxxghkIcYLGPuY-PGTsFA1oTCnmPJRnaHhcMBmeowHxeyxFyC_R0LkPQggTkg3QarHZNvZL58GqU3VrCpOp1tg6sEUwtbUOXvTG5rqqTF0G6S5Yt6Yy-36Yd_v9Lpgq529fdbnRdXu4vEIXhaqcHh_rCK3nD2-zJ7x8flzMJkvseBS3OKcyIyGnkQyTMCY8FUIpFukoSYpMZlTHRVSohOQ8izyRFLmMFVdp5nutpeIjhH__um-97VLYNmajmh1YZcBVXaqavoDTwAQjiedv_uTvzfsEbFNC1wGlJE7-idum53kceZwdcQ_WpW4gtfbTASXQ-wMvCjh4I3BwBb0__gODros3</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Lindblad, Joakim</creator><creator>Sladoje, Nataša</creator><creator>Ćurić, Vladimir</creator><creator>Sarve, Hamid</creator><creator>Johansson, Carina B.</creator><creator>Borgefors, Gunilla</creator><general>Springer Berlin Heidelberg</general><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D91</scope><scope>DF2</scope></search><sort><creationdate>2009</creationdate><title>Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation</title><author>Lindblad, Joakim ; Sladoje, Nataša ; Ćurić, Vladimir ; Sarve, Hamid ; Johansson, Carina B. ; Borgefors, Gunilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s356t-d19c043159484603b77aa25e588fc9c1e6f5fa80d3c54848fd96a3abc848ee9a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bildanalys</topic><topic>Biomaterial</topic><topic>Biomaterials</topic><topic>Computerized Image Analysis</topic><topic>Datoriserad bildanalys</topic><topic>Discriminant Analysis</topic><topic>Ground Section</topic><topic>Image analysis</topic><topic>Information technology</topic><topic>Informationsteknik</topic><topic>Medicin</topic><topic>Medicine</topic><topic>Multiple Seed</topic><topic>ODONTOLOGI</topic><topic>ODONTOLOGY</topic><topic>Segmentation Method</topic><topic>Suggested Method</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindblad, Joakim</creatorcontrib><creatorcontrib>Sladoje, Nataša</creatorcontrib><creatorcontrib>Ćurić, Vladimir</creatorcontrib><creatorcontrib>Sarve, Hamid</creatorcontrib><creatorcontrib>Johansson, Carina B.</creatorcontrib><creatorcontrib>Borgefors, Gunilla</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Örebro universitet</collection><collection>SWEPUB Uppsala universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindblad, Joakim</au><au>Sladoje, Nataša</au><au>Ćurić, Vladimir</au><au>Sarve, Hamid</au><au>Johansson, Carina B.</au><au>Borgefors, Gunilla</au><au>Hardeberg, Jon Yngve</au><au>Salberg, Arnt-Børre</au><au>Jenssen, Robert</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation</atitle><btitle>Image Analysis</btitle><date>2009</date><risdate>2009</risdate><volume>5575</volume><spage>750</spage><epage>759</epage><pages>750-759</pages><issn>0302-9743</issn><issn>1611-3349</issn><eissn>1611-3349</eissn><isbn>3642022294</isbn><isbn>9783642022296</isbn><eisbn>9783642022302</eisbn><eisbn>3642022308</eisbn><abstract>We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmentation method, so that the former is used for automatic seeding of the later. A thorough evaluation of the proposed segmentation method is performed. Comparison with previously published automatically obtained measurements, as well as with manually obtained ones, is presented. The proposed method improves the segmentation and, consequently, the accuracy of the automatic measurements, while keeping advantages with respect to the manual ones, by being fast, repeatable, and objective.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-642-02230-2_77</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Image Analysis, 2009, Vol.5575, p.750-759 |
issn | 0302-9743 1611-3349 1611-3349 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_27208 |
source | Springer Books |
subjects | Bildanalys Biomaterial Biomaterials Computerized Image Analysis Datoriserad bildanalys Discriminant Analysis Ground Section Image analysis Information technology Informationsteknik Medicin Medicine Multiple Seed ODONTOLOGI ODONTOLOGY Segmentation Method Suggested Method TECHNOLOGY TEKNIKVETENSKAP |
title | Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20Quantification%20of%20Bone%20Remodelling%20by%20Utilizing%20Fuzzy%20Based%20Segmentation&rft.btitle=Image%20Analysis&rft.au=Lindblad,%20Joakim&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2009&rft.volume=5575&rft.spage=750&rft.epage=759&rft.pages=750-759&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3642022294&rft.isbn_list=9783642022296&rft_id=info:doi/10.1007/978-3-642-02230-2_77&rft_dat=%3Cswepub_sprin%3Eoai_DiVA_org_uu_110688%3C/swepub_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783642022302&rft.eisbn_list=3642022308&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |