Hop stunt viroid infection induces heterochromatin reorganization
Summary Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2024-09, Vol.243 (6), p.2351-2367 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2367 |
---|---|
container_issue | 6 |
container_start_page | 2351 |
container_title | The New phytologist |
container_volume | 243 |
creator | Marquez‐Molins, Joan Cheng, Jinping Corell‐Sierra, Julia Juarez‐Gonzalez, Vasti Thamara Villalba‐Bermell, Pascual Annacondia, Maria Luz Gomez, Gustavo Martinez, German |
description | Summary
Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response.
Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3.
We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks.
Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants. |
doi_str_mv | 10.1111/nph.19986 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_131774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082959390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3506-2b709bec5fa70efb32140ea5caa4024361bb7c1cbbaa2a63da3690ee61f7b3303</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS1UVLbbHvgDVSQu7SGL7Uns-IgQ7VZCtAeQerNs76RrlI2DnYDor6-3oRyQUOcyc_jmaeY9Qo4ZXbFcp_2wXTGlGnFAFqwSqmwYyDdkQSlvSlGJn0fkXUq3lFJVC_6WHIGiQBsuFuRsHYYijVM_Fvc-Br8pfN-iG33o87SZHKZiiyPG4LYx7Mzo-yJiiL9M73-bPfaeHLamS_jhqS_JzZeL6_N1efn967fzs8vSQU1Fya2kyqKrWyMpthY4qyia2hlTUV6BYNZKx5y1xnAjYGNAKIooWCstAIUlWc266QGHyeoh-p2JjzoYr1M3WRP3TSfUDJiUVV74NC8MMdxNmEa988lh15kew5Q0sBpktojD_9FslqrV3rYlOXmB3oYp9vnzTKkaOIhGZurzTLkYUorYPp_LqN5npnNm-m9mmf34pDjZHW6eyX8hZeB0Bh58h4-vK-mrH-tZ8g9sRKD9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095323687</pqid></control><display><type>article</type><title>Hop stunt viroid infection induces heterochromatin reorganization</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>SWEPUB Freely available online</source><creator>Marquez‐Molins, Joan ; Cheng, Jinping ; Corell‐Sierra, Julia ; Juarez‐Gonzalez, Vasti Thamara ; Villalba‐Bermell, Pascual ; Annacondia, Maria Luz ; Gomez, Gustavo ; Martinez, German</creator><creatorcontrib>Marquez‐Molins, Joan ; Cheng, Jinping ; Corell‐Sierra, Julia ; Juarez‐Gonzalez, Vasti Thamara ; Villalba‐Bermell, Pascual ; Annacondia, Maria Luz ; Gomez, Gustavo ; Martinez, German ; Sveriges lantbruksuniversitet</creatorcontrib><description>Summary
Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response.
Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3.
We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks.
Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19986</identifier><identifier>PMID: 39030826</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>biotic stress ; Botanik ; Botany ; Chromatin ; chromatin immunoprecipitation ; cucumbers ; Cucumis sativus ; Cucumis sativus - genetics ; Cucumis sativus - virology ; defense ; DNA methylation ; DNA Transposable Elements - genetics ; Epigenesis, Genetic ; Epigenetics ; Gene Expression Regulation, Plant ; Gene regulation ; Genes ; Heterochromatin ; Heterochromatin - genetics ; Heterochromatin - metabolism ; histone marks ; Histones ; Histones - metabolism ; Hop stunt viroid ; Host plants ; Host-Pathogen Interactions - genetics ; Immunoprecipitation ; Infections ; Life cycle ; Machinery ; Molecular machines ; Pathogenesis ; Plant Diseases - genetics ; Plant Diseases - virology ; Plant Viruses - pathogenicity ; Plant Viruses - physiology ; Regulatory mechanisms (biology) ; repressive epigenetic marks ; Stunt ; transcription (genetics) ; Viroids ; Viroids - genetics ; Viroids - pathogenicity ; Viroids - physiology</subject><ispartof>The New phytologist, 2024-09, Vol.243 (6), p.2351-2367</ispartof><rights>2024 The Author(s). © 2024 New Phytologist Foundation.</rights><rights>2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3506-2b709bec5fa70efb32140ea5caa4024361bb7c1cbbaa2a63da3690ee61f7b3303</cites><orcidid>0000-0001-6057-6755 ; 0000-0002-5215-0866 ; 0000-0003-3715-7792 ; 0000-0002-2631-8928 ; 0000-0003-0751-4381 ; 0000-0001-7998-8362 ; 0000-0003-0749-7649 ; 0000-0002-6487-6488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19986$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19986$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39030826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/131774$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Marquez‐Molins, Joan</creatorcontrib><creatorcontrib>Cheng, Jinping</creatorcontrib><creatorcontrib>Corell‐Sierra, Julia</creatorcontrib><creatorcontrib>Juarez‐Gonzalez, Vasti Thamara</creatorcontrib><creatorcontrib>Villalba‐Bermell, Pascual</creatorcontrib><creatorcontrib>Annacondia, Maria Luz</creatorcontrib><creatorcontrib>Gomez, Gustavo</creatorcontrib><creatorcontrib>Martinez, German</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Hop stunt viroid infection induces heterochromatin reorganization</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response.
Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3.
We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks.
Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.</description><subject>biotic stress</subject><subject>Botanik</subject><subject>Botany</subject><subject>Chromatin</subject><subject>chromatin immunoprecipitation</subject><subject>cucumbers</subject><subject>Cucumis sativus</subject><subject>Cucumis sativus - genetics</subject><subject>Cucumis sativus - virology</subject><subject>defense</subject><subject>DNA methylation</subject><subject>DNA Transposable Elements - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - metabolism</subject><subject>histone marks</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Hop stunt viroid</subject><subject>Host plants</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Immunoprecipitation</subject><subject>Infections</subject><subject>Life cycle</subject><subject>Machinery</subject><subject>Molecular machines</subject><subject>Pathogenesis</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - virology</subject><subject>Plant Viruses - pathogenicity</subject><subject>Plant Viruses - physiology</subject><subject>Regulatory mechanisms (biology)</subject><subject>repressive epigenetic marks</subject><subject>Stunt</subject><subject>transcription (genetics)</subject><subject>Viroids</subject><subject>Viroids - genetics</subject><subject>Viroids - pathogenicity</subject><subject>Viroids - physiology</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqFkUFP3DAQhS1UVLbbHvgDVSQu7SGL7Uns-IgQ7VZCtAeQerNs76RrlI2DnYDor6-3oRyQUOcyc_jmaeY9Qo4ZXbFcp_2wXTGlGnFAFqwSqmwYyDdkQSlvSlGJn0fkXUq3lFJVC_6WHIGiQBsuFuRsHYYijVM_Fvc-Br8pfN-iG33o87SZHKZiiyPG4LYx7Mzo-yJiiL9M73-bPfaeHLamS_jhqS_JzZeL6_N1efn967fzs8vSQU1Fya2kyqKrWyMpthY4qyia2hlTUV6BYNZKx5y1xnAjYGNAKIooWCstAIUlWc266QGHyeoh-p2JjzoYr1M3WRP3TSfUDJiUVV74NC8MMdxNmEa988lh15kew5Q0sBpktojD_9FslqrV3rYlOXmB3oYp9vnzTKkaOIhGZurzTLkYUorYPp_LqN5npnNm-m9mmf34pDjZHW6eyX8hZeB0Bh58h4-vK-mrH-tZ8g9sRKD9</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Marquez‐Molins, Joan</creator><creator>Cheng, Jinping</creator><creator>Corell‐Sierra, Julia</creator><creator>Juarez‐Gonzalez, Vasti Thamara</creator><creator>Villalba‐Bermell, Pascual</creator><creator>Annacondia, Maria Luz</creator><creator>Gomez, Gustavo</creator><creator>Martinez, German</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-6057-6755</orcidid><orcidid>https://orcid.org/0000-0002-5215-0866</orcidid><orcidid>https://orcid.org/0000-0003-3715-7792</orcidid><orcidid>https://orcid.org/0000-0002-2631-8928</orcidid><orcidid>https://orcid.org/0000-0003-0751-4381</orcidid><orcidid>https://orcid.org/0000-0001-7998-8362</orcidid><orcidid>https://orcid.org/0000-0003-0749-7649</orcidid><orcidid>https://orcid.org/0000-0002-6487-6488</orcidid></search><sort><creationdate>202409</creationdate><title>Hop stunt viroid infection induces heterochromatin reorganization</title><author>Marquez‐Molins, Joan ; Cheng, Jinping ; Corell‐Sierra, Julia ; Juarez‐Gonzalez, Vasti Thamara ; Villalba‐Bermell, Pascual ; Annacondia, Maria Luz ; Gomez, Gustavo ; Martinez, German</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3506-2b709bec5fa70efb32140ea5caa4024361bb7c1cbbaa2a63da3690ee61f7b3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biotic stress</topic><topic>Botanik</topic><topic>Botany</topic><topic>Chromatin</topic><topic>chromatin immunoprecipitation</topic><topic>cucumbers</topic><topic>Cucumis sativus</topic><topic>Cucumis sativus - genetics</topic><topic>Cucumis sativus - virology</topic><topic>defense</topic><topic>DNA methylation</topic><topic>DNA Transposable Elements - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - metabolism</topic><topic>histone marks</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Hop stunt viroid</topic><topic>Host plants</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Immunoprecipitation</topic><topic>Infections</topic><topic>Life cycle</topic><topic>Machinery</topic><topic>Molecular machines</topic><topic>Pathogenesis</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - virology</topic><topic>Plant Viruses - pathogenicity</topic><topic>Plant Viruses - physiology</topic><topic>Regulatory mechanisms (biology)</topic><topic>repressive epigenetic marks</topic><topic>Stunt</topic><topic>transcription (genetics)</topic><topic>Viroids</topic><topic>Viroids - genetics</topic><topic>Viroids - pathogenicity</topic><topic>Viroids - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marquez‐Molins, Joan</creatorcontrib><creatorcontrib>Cheng, Jinping</creatorcontrib><creatorcontrib>Corell‐Sierra, Julia</creatorcontrib><creatorcontrib>Juarez‐Gonzalez, Vasti Thamara</creatorcontrib><creatorcontrib>Villalba‐Bermell, Pascual</creatorcontrib><creatorcontrib>Annacondia, Maria Luz</creatorcontrib><creatorcontrib>Gomez, Gustavo</creatorcontrib><creatorcontrib>Martinez, German</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marquez‐Molins, Joan</au><au>Cheng, Jinping</au><au>Corell‐Sierra, Julia</au><au>Juarez‐Gonzalez, Vasti Thamara</au><au>Villalba‐Bermell, Pascual</au><au>Annacondia, Maria Luz</au><au>Gomez, Gustavo</au><au>Martinez, German</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hop stunt viroid infection induces heterochromatin reorganization</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-09</date><risdate>2024</risdate><volume>243</volume><issue>6</issue><spage>2351</spage><epage>2367</epage><pages>2351-2367</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Summary
Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response.
Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3.
We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks.
Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39030826</pmid><doi>10.1111/nph.19986</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6057-6755</orcidid><orcidid>https://orcid.org/0000-0002-5215-0866</orcidid><orcidid>https://orcid.org/0000-0003-3715-7792</orcidid><orcidid>https://orcid.org/0000-0002-2631-8928</orcidid><orcidid>https://orcid.org/0000-0003-0751-4381</orcidid><orcidid>https://orcid.org/0000-0001-7998-8362</orcidid><orcidid>https://orcid.org/0000-0003-0749-7649</orcidid><orcidid>https://orcid.org/0000-0002-6487-6488</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2024-09, Vol.243 (6), p.2351-2367 |
issn | 0028-646X 1469-8137 1469-8137 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_131774 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; SWEPUB Freely available online |
subjects | biotic stress Botanik Botany Chromatin chromatin immunoprecipitation cucumbers Cucumis sativus Cucumis sativus - genetics Cucumis sativus - virology defense DNA methylation DNA Transposable Elements - genetics Epigenesis, Genetic Epigenetics Gene Expression Regulation, Plant Gene regulation Genes Heterochromatin Heterochromatin - genetics Heterochromatin - metabolism histone marks Histones Histones - metabolism Hop stunt viroid Host plants Host-Pathogen Interactions - genetics Immunoprecipitation Infections Life cycle Machinery Molecular machines Pathogenesis Plant Diseases - genetics Plant Diseases - virology Plant Viruses - pathogenicity Plant Viruses - physiology Regulatory mechanisms (biology) repressive epigenetic marks Stunt transcription (genetics) Viroids Viroids - genetics Viroids - pathogenicity Viroids - physiology |
title | Hop stunt viroid infection induces heterochromatin reorganization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hop%20stunt%20viroid%20infection%20induces%20heterochromatin%20reorganization&rft.jtitle=The%20New%20phytologist&rft.au=Marquez%E2%80%90Molins,%20Joan&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2024-09&rft.volume=243&rft.issue=6&rft.spage=2351&rft.epage=2367&rft.pages=2351-2367&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19986&rft_dat=%3Cproquest_swepu%3E3082959390%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095323687&rft_id=info:pmid/39030826&rfr_iscdi=true |