Hop stunt viroid infection induces heterochromatin reorganization

Summary Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2024-09, Vol.243 (6), p.2351-2367
Hauptverfasser: Marquez‐Molins, Joan, Cheng, Jinping, Corell‐Sierra, Julia, Juarez‐Gonzalez, Vasti Thamara, Villalba‐Bermell, Pascual, Annacondia, Maria Luz, Gomez, Gustavo, Martinez, German
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2367
container_issue 6
container_start_page 2351
container_title The New phytologist
container_volume 243
creator Marquez‐Molins, Joan
Cheng, Jinping
Corell‐Sierra, Julia
Juarez‐Gonzalez, Vasti Thamara
Villalba‐Bermell, Pascual
Annacondia, Maria Luz
Gomez, Gustavo
Martinez, German
description Summary Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response. Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3. We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks. Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.
doi_str_mv 10.1111/nph.19986
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_131774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082959390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3506-2b709bec5fa70efb32140ea5caa4024361bb7c1cbbaa2a63da3690ee61f7b3303</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS1UVLbbHvgDVSQu7SGL7Uns-IgQ7VZCtAeQerNs76RrlI2DnYDor6-3oRyQUOcyc_jmaeY9Qo4ZXbFcp_2wXTGlGnFAFqwSqmwYyDdkQSlvSlGJn0fkXUq3lFJVC_6WHIGiQBsuFuRsHYYijVM_Fvc-Br8pfN-iG33o87SZHKZiiyPG4LYx7Mzo-yJiiL9M73-bPfaeHLamS_jhqS_JzZeL6_N1efn967fzs8vSQU1Fya2kyqKrWyMpthY4qyia2hlTUV6BYNZKx5y1xnAjYGNAKIooWCstAIUlWc266QGHyeoh-p2JjzoYr1M3WRP3TSfUDJiUVV74NC8MMdxNmEa988lh15kew5Q0sBpktojD_9FslqrV3rYlOXmB3oYp9vnzTKkaOIhGZurzTLkYUorYPp_LqN5npnNm-m9mmf34pDjZHW6eyX8hZeB0Bh58h4-vK-mrH-tZ8g9sRKD9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095323687</pqid></control><display><type>article</type><title>Hop stunt viroid infection induces heterochromatin reorganization</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>SWEPUB Freely available online</source><creator>Marquez‐Molins, Joan ; Cheng, Jinping ; Corell‐Sierra, Julia ; Juarez‐Gonzalez, Vasti Thamara ; Villalba‐Bermell, Pascual ; Annacondia, Maria Luz ; Gomez, Gustavo ; Martinez, German</creator><creatorcontrib>Marquez‐Molins, Joan ; Cheng, Jinping ; Corell‐Sierra, Julia ; Juarez‐Gonzalez, Vasti Thamara ; Villalba‐Bermell, Pascual ; Annacondia, Maria Luz ; Gomez, Gustavo ; Martinez, German ; Sveriges lantbruksuniversitet</creatorcontrib><description>Summary Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response. Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3. We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks. Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19986</identifier><identifier>PMID: 39030826</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>biotic stress ; Botanik ; Botany ; Chromatin ; chromatin immunoprecipitation ; cucumbers ; Cucumis sativus ; Cucumis sativus - genetics ; Cucumis sativus - virology ; defense ; DNA methylation ; DNA Transposable Elements - genetics ; Epigenesis, Genetic ; Epigenetics ; Gene Expression Regulation, Plant ; Gene regulation ; Genes ; Heterochromatin ; Heterochromatin - genetics ; Heterochromatin - metabolism ; histone marks ; Histones ; Histones - metabolism ; Hop stunt viroid ; Host plants ; Host-Pathogen Interactions - genetics ; Immunoprecipitation ; Infections ; Life cycle ; Machinery ; Molecular machines ; Pathogenesis ; Plant Diseases - genetics ; Plant Diseases - virology ; Plant Viruses - pathogenicity ; Plant Viruses - physiology ; Regulatory mechanisms (biology) ; repressive epigenetic marks ; Stunt ; transcription (genetics) ; Viroids ; Viroids - genetics ; Viroids - pathogenicity ; Viroids - physiology</subject><ispartof>The New phytologist, 2024-09, Vol.243 (6), p.2351-2367</ispartof><rights>2024 The Author(s). © 2024 New Phytologist Foundation.</rights><rights>2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3506-2b709bec5fa70efb32140ea5caa4024361bb7c1cbbaa2a63da3690ee61f7b3303</cites><orcidid>0000-0001-6057-6755 ; 0000-0002-5215-0866 ; 0000-0003-3715-7792 ; 0000-0002-2631-8928 ; 0000-0003-0751-4381 ; 0000-0001-7998-8362 ; 0000-0003-0749-7649 ; 0000-0002-6487-6488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19986$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19986$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39030826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/131774$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Marquez‐Molins, Joan</creatorcontrib><creatorcontrib>Cheng, Jinping</creatorcontrib><creatorcontrib>Corell‐Sierra, Julia</creatorcontrib><creatorcontrib>Juarez‐Gonzalez, Vasti Thamara</creatorcontrib><creatorcontrib>Villalba‐Bermell, Pascual</creatorcontrib><creatorcontrib>Annacondia, Maria Luz</creatorcontrib><creatorcontrib>Gomez, Gustavo</creatorcontrib><creatorcontrib>Martinez, German</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Hop stunt viroid infection induces heterochromatin reorganization</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response. Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3. We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks. Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.</description><subject>biotic stress</subject><subject>Botanik</subject><subject>Botany</subject><subject>Chromatin</subject><subject>chromatin immunoprecipitation</subject><subject>cucumbers</subject><subject>Cucumis sativus</subject><subject>Cucumis sativus - genetics</subject><subject>Cucumis sativus - virology</subject><subject>defense</subject><subject>DNA methylation</subject><subject>DNA Transposable Elements - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - metabolism</subject><subject>histone marks</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Hop stunt viroid</subject><subject>Host plants</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Immunoprecipitation</subject><subject>Infections</subject><subject>Life cycle</subject><subject>Machinery</subject><subject>Molecular machines</subject><subject>Pathogenesis</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - virology</subject><subject>Plant Viruses - pathogenicity</subject><subject>Plant Viruses - physiology</subject><subject>Regulatory mechanisms (biology)</subject><subject>repressive epigenetic marks</subject><subject>Stunt</subject><subject>transcription (genetics)</subject><subject>Viroids</subject><subject>Viroids - genetics</subject><subject>Viroids - pathogenicity</subject><subject>Viroids - physiology</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqFkUFP3DAQhS1UVLbbHvgDVSQu7SGL7Uns-IgQ7VZCtAeQerNs76RrlI2DnYDor6-3oRyQUOcyc_jmaeY9Qo4ZXbFcp_2wXTGlGnFAFqwSqmwYyDdkQSlvSlGJn0fkXUq3lFJVC_6WHIGiQBsuFuRsHYYijVM_Fvc-Br8pfN-iG33o87SZHKZiiyPG4LYx7Mzo-yJiiL9M73-bPfaeHLamS_jhqS_JzZeL6_N1efn967fzs8vSQU1Fya2kyqKrWyMpthY4qyia2hlTUV6BYNZKx5y1xnAjYGNAKIooWCstAIUlWc266QGHyeoh-p2JjzoYr1M3WRP3TSfUDJiUVV74NC8MMdxNmEa988lh15kew5Q0sBpktojD_9FslqrV3rYlOXmB3oYp9vnzTKkaOIhGZurzTLkYUorYPp_LqN5npnNm-m9mmf34pDjZHW6eyX8hZeB0Bh58h4-vK-mrH-tZ8g9sRKD9</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Marquez‐Molins, Joan</creator><creator>Cheng, Jinping</creator><creator>Corell‐Sierra, Julia</creator><creator>Juarez‐Gonzalez, Vasti Thamara</creator><creator>Villalba‐Bermell, Pascual</creator><creator>Annacondia, Maria Luz</creator><creator>Gomez, Gustavo</creator><creator>Martinez, German</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-6057-6755</orcidid><orcidid>https://orcid.org/0000-0002-5215-0866</orcidid><orcidid>https://orcid.org/0000-0003-3715-7792</orcidid><orcidid>https://orcid.org/0000-0002-2631-8928</orcidid><orcidid>https://orcid.org/0000-0003-0751-4381</orcidid><orcidid>https://orcid.org/0000-0001-7998-8362</orcidid><orcidid>https://orcid.org/0000-0003-0749-7649</orcidid><orcidid>https://orcid.org/0000-0002-6487-6488</orcidid></search><sort><creationdate>202409</creationdate><title>Hop stunt viroid infection induces heterochromatin reorganization</title><author>Marquez‐Molins, Joan ; Cheng, Jinping ; Corell‐Sierra, Julia ; Juarez‐Gonzalez, Vasti Thamara ; Villalba‐Bermell, Pascual ; Annacondia, Maria Luz ; Gomez, Gustavo ; Martinez, German</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3506-2b709bec5fa70efb32140ea5caa4024361bb7c1cbbaa2a63da3690ee61f7b3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biotic stress</topic><topic>Botanik</topic><topic>Botany</topic><topic>Chromatin</topic><topic>chromatin immunoprecipitation</topic><topic>cucumbers</topic><topic>Cucumis sativus</topic><topic>Cucumis sativus - genetics</topic><topic>Cucumis sativus - virology</topic><topic>defense</topic><topic>DNA methylation</topic><topic>DNA Transposable Elements - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - metabolism</topic><topic>histone marks</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Hop stunt viroid</topic><topic>Host plants</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Immunoprecipitation</topic><topic>Infections</topic><topic>Life cycle</topic><topic>Machinery</topic><topic>Molecular machines</topic><topic>Pathogenesis</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - virology</topic><topic>Plant Viruses - pathogenicity</topic><topic>Plant Viruses - physiology</topic><topic>Regulatory mechanisms (biology)</topic><topic>repressive epigenetic marks</topic><topic>Stunt</topic><topic>transcription (genetics)</topic><topic>Viroids</topic><topic>Viroids - genetics</topic><topic>Viroids - pathogenicity</topic><topic>Viroids - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marquez‐Molins, Joan</creatorcontrib><creatorcontrib>Cheng, Jinping</creatorcontrib><creatorcontrib>Corell‐Sierra, Julia</creatorcontrib><creatorcontrib>Juarez‐Gonzalez, Vasti Thamara</creatorcontrib><creatorcontrib>Villalba‐Bermell, Pascual</creatorcontrib><creatorcontrib>Annacondia, Maria Luz</creatorcontrib><creatorcontrib>Gomez, Gustavo</creatorcontrib><creatorcontrib>Martinez, German</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marquez‐Molins, Joan</au><au>Cheng, Jinping</au><au>Corell‐Sierra, Julia</au><au>Juarez‐Gonzalez, Vasti Thamara</au><au>Villalba‐Bermell, Pascual</au><au>Annacondia, Maria Luz</au><au>Gomez, Gustavo</au><au>Martinez, German</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hop stunt viroid infection induces heterochromatin reorganization</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-09</date><risdate>2024</risdate><volume>243</volume><issue>6</issue><spage>2351</spage><epage>2367</epage><pages>2351-2367</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Summary Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response. Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3. We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks. Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39030826</pmid><doi>10.1111/nph.19986</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6057-6755</orcidid><orcidid>https://orcid.org/0000-0002-5215-0866</orcidid><orcidid>https://orcid.org/0000-0003-3715-7792</orcidid><orcidid>https://orcid.org/0000-0002-2631-8928</orcidid><orcidid>https://orcid.org/0000-0003-0751-4381</orcidid><orcidid>https://orcid.org/0000-0001-7998-8362</orcidid><orcidid>https://orcid.org/0000-0003-0749-7649</orcidid><orcidid>https://orcid.org/0000-0002-6487-6488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2024-09, Vol.243 (6), p.2351-2367
issn 0028-646X
1469-8137
1469-8137
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_131774
source Wiley Online Library - AutoHoldings Journals; MEDLINE; SWEPUB Freely available online
subjects biotic stress
Botanik
Botany
Chromatin
chromatin immunoprecipitation
cucumbers
Cucumis sativus
Cucumis sativus - genetics
Cucumis sativus - virology
defense
DNA methylation
DNA Transposable Elements - genetics
Epigenesis, Genetic
Epigenetics
Gene Expression Regulation, Plant
Gene regulation
Genes
Heterochromatin
Heterochromatin - genetics
Heterochromatin - metabolism
histone marks
Histones
Histones - metabolism
Hop stunt viroid
Host plants
Host-Pathogen Interactions - genetics
Immunoprecipitation
Infections
Life cycle
Machinery
Molecular machines
Pathogenesis
Plant Diseases - genetics
Plant Diseases - virology
Plant Viruses - pathogenicity
Plant Viruses - physiology
Regulatory mechanisms (biology)
repressive epigenetic marks
Stunt
transcription (genetics)
Viroids
Viroids - genetics
Viroids - pathogenicity
Viroids - physiology
title Hop stunt viroid infection induces heterochromatin reorganization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hop%20stunt%20viroid%20infection%20induces%20heterochromatin%20reorganization&rft.jtitle=The%20New%20phytologist&rft.au=Marquez%E2%80%90Molins,%20Joan&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2024-09&rft.volume=243&rft.issue=6&rft.spage=2351&rft.epage=2367&rft.pages=2351-2367&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19986&rft_dat=%3Cproquest_swepu%3E3082959390%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095323687&rft_id=info:pmid/39030826&rfr_iscdi=true